A Real-Time Application of Singular Spectrum Analysis to Object Tracking with SIFT

dc.contributor.authorÖztürk, Ali
dc.contributor.authorCayıroğlu, İbrahim
dc.date.accessioned2022-09-04T10:27:14Z
dc.date.available2022-09-04T10:27:14Z
dc.date.issued2022
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Makine ve Metal Teknolojileri Bölümüen_US
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Makine ve Metal Teknolojileri Bölümüen_US
dc.description.abstractThis study combined SIFT and SSA to propose a novel algorithm for real-time object tracking. The proposed algorithm utilizes an intermediate fixed-size buffer and a modified SSA algorithm. Since the complete reconstruction step of the SSA algorithm was unnecessary, it was considerably simplified. In addition, the execution time of a Matlab implementation of the SSA algorithm was compared with a respective C++ implementation. Moreover, the performance of the two different matching algorithms in the detection, the FlannBasedMatcher and Brute-Force matcher algorithms of the OpenCV library, was compared.en_US
dc.identifier.endpage8877en_US
dc.identifier.issn2241-4487
dc.identifier.issn1792-8036
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85151460081
dc.identifier.scopusqualityQ2
dc.identifier.startpage8872en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4768
dc.identifier.volume12en_US
dc.identifier.wosWOS:000843479700015
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorÖztürk, Ali
dc.language.isoen
dc.publisherEos Assocen_US
dc.relation.ispartofEngineering Technology & Applied Science Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectobject tracking; object detection; computer vision; SIFT; SSAen_US
dc.subjectFeature-Selection; Featuresen_US
dc.titleA Real-Time Application of Singular Spectrum Analysis to Object Tracking with SIFTen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4768.pdf
Boyut:
596.37 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text