Modified Barnacles Mating Optimizing Algorithm for the Inversion of Self-potential Anomalies Due to Ore Deposits

dc.contributor.authorAi, Hanbing
dc.contributor.authorEkinci, Yunus Levent
dc.contributor.authorBalkaya, Caglayan
dc.contributor.authorAlvandi, Ahmad
dc.contributor.authorEkinci, Rezzan
dc.contributor.authorRoy, Arka
dc.contributor.authorSu, Kejia
dc.date.accessioned2024-12-14T22:07:15Z
dc.date.available2024-12-14T22:07:15Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe self-potential method (SP) has been used extensively to reveal some model parameters of various ore deposits. However, estimating these parameters can be challenging due to the mathematical nature of the inversion process. To address this issue, we propose here a novel global optimizer called the Modified Barnacles Mating Optimizer (MBMO). We improved upon the original approach by incorporating a variable genital length strategy, a novel barnacle offspring evolving method, and an out-of-bounds correction approach. The MBMO has not been previously applied to geophysical anomalies. Prior to inversion of real data sets, modal and sensitivity Analyzes were conducted using a theoretical model with multiple sources. The Analyzes revealed that the problem is modal in nature, model parameters have varying levels of sensitivity, and an algorithm that can well balance global exploration with local exploitation is required to solve this problem. The MBMO was tested on theoretical SP anomalies and four real datasets from Turkiye, Canada, India, and Germany. Its performance was compared to the original version under equal conditions. Uncertainty determination studies were carried out to comprehend the reliability of the solutions obtained via both algorithms. The findings indicated clearly that the MBMO outperformed its original version in estimating the model parameters from SP anomalies. The modifications presented here improved its ability to search for the global minimum effectively. In addition to geophysical datasets, experiments with 11 challenging benchmark functions demonstrated the advantages of MBMO in optimization problems. Theoretical and field data applications showed that the proposed algorithm can be used effectively in model parameter estimations from SP anomalies of ore deposits with the help of total gradient anomalies.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TUBITAK)en_US
dc.description.sponsorshipOpen access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK).en_US
dc.identifier.doi10.1007/s11053-024-10331-7
dc.identifier.endpage1102en_US
dc.identifier.issn1520-7439
dc.identifier.issn1573-8981
dc.identifier.issue3en_US
dc.identifier.orcid0000-0003-4966-1208
dc.identifier.orcidAi, Hanbing
dc.identifier.orcid0000-0002-4336-1039
dc.identifier.orcid0000-0002-5367-8857
dc.identifier.orcid0000-0001-8139-9567
dc.identifier.orcid0000-0002-5415-8001
dc.identifier.orcid0000-0002-4603-7760
dc.identifier.scopus2-s2.0-85188231488
dc.identifier.scopusqualityQ1
dc.identifier.startpage1073en_US
dc.identifier.urihttps://doi.org/10.1007/s11053-024-10331-7
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6477
dc.identifier.volume33en_US
dc.identifier.wosWOS:001190055600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofNatural Resources Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_20241214
dc.subjectSelf-potential anomaliesen_US
dc.subjectOre depositsen_US
dc.subjectGlobal optimizationen_US
dc.subjectModified barnacles mating optimizeren_US
dc.subjectTotal gradient anomalyen_US
dc.titleModified Barnacles Mating Optimizing Algorithm for the Inversion of Self-potential Anomalies Due to Ore Depositsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6477.pdf
Boyut:
3.32 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text