A New Version of Five-Axis Motion of Spheres with Spacelike Curves in Minkowski Space

dc.contributor.authorBas, Selcuk
dc.contributor.authorAsıl, Vedat
dc.contributor.authorKörpınar, Talat
dc.date.accessioned2020-01-29T18:51:53Z
dc.date.available2020-01-29T18:51:53Z
dc.date.issued2018
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we investigate efficient parametric approach of determining the motion of the envelope surface by a spacelike curve in E-1(3). In this new method the cutteris modeled as a canal surface. Also, cutter surfaces performing 5-axis tool motions are decomposed into a set of characteristic circles. For obtaining these circles a new method two-parameter-family of spheres is introduced. In this concept the center of a moving sphere is a function of two parameters representing the cutter surface and the tool motion. Using the Frenet frame of the given curve, we obtain new Drichlet approach for five-axis canal surface. Finally, we obtain minimality of five axis surfaces by using Drichlet approach.en_US
dc.identifier.doi10.1166/jap.2018.1436
dc.identifier.endpage375en_US
dc.identifier.issn2168-1996
dc.identifier.issn2168-2003
dc.identifier.issue3en_US
dc.identifier.startpage366en_US
dc.identifier.urihttps://dx.doi.org/10.1166/jap.2018.1436
dc.identifier.urihttps://hdl.handle.net/20.500.12639/755
dc.identifier.volume7en_US
dc.identifier.wosWOS:000456113100011
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherAMER SCIENTIFIC PUBLISHERSen_US
dc.relation.ispartofJOURNAL OF ADVANCED PHYSICSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTwo-Parameter Families of Spheresen_US
dc.subjectFive Axis NC Machiningen_US
dc.subjectCanal Surfaceen_US
dc.subjectMinkowski Spaceen_US
dc.titleA New Version of Five-Axis Motion of Spheres with Spacelike Curves in Minkowski Spaceen_US
dc.typeArticle

Dosyalar