Statistical order limit points in Riesz spaces
| dc.contributor.author | Ilbira, Sabahattin | |
| dc.contributor.author | Aydin, Abdullah | |
| dc.date.accessioned | 2024-12-14T22:07:33Z | |
| dc.date.available | 2024-12-14T22:07:33Z | |
| dc.date.issued | 2024 | |
| dc.department | Muş Alparslan Üniversitesi | en_US |
| dc.description.abstract | The concept of statistical order convergence of sequences in Riesz spaces was introduced and studied. In the present paper, we define the statistical order limit points of a sequence (xn) as a vector x that is the order limit of a subsequence (xk)k is an element of K of (xn) such that the set K does not have density zero. Moreover, we introduce the statistical order cluster points of sequences in Riesz spaces, and also, we give some relations between them. | en_US |
| dc.identifier.doi | 10.2298/FIL2404197I | |
| dc.identifier.endpage | 1202 | en_US |
| dc.identifier.issn | 0354-5180 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.scopus | 2-s2.0-85179303843 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 1197 | en_US |
| dc.identifier.uri | https://doi.org/10.2298/FIL2404197I | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/6659 | |
| dc.identifier.volume | 38 | en_US |
| dc.identifier.wos | WOS:001122634500001 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Univ Nis, Fac Sci Math | en_US |
| dc.relation.ispartof | Filomat | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.snmz | KA_20241214 | |
| dc.subject | Riesz space | en_US |
| dc.subject | Order limit point | en_US |
| dc.subject | Statistical order limit point | en_US |
| dc.subject | Statistical order cluster point | en_US |
| dc.title | Statistical order limit points in Riesz spaces | en_US |
| dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 6659.pdf
- Boyut:
- 188.44 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text










