A NEW APPROACH ON THE CURVATURE DEPENDENT ENERGY FOR ELASTIC CURVES IN A LIE GROUP

dc.contributor.authorKörpınar, Talat
dc.contributor.authorDemirkol, Ridvan Cem
dc.date.accessioned2020-01-29T18:51:57Z
dc.date.available2020-01-29T18:51:57Z
dc.date.issued2017
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractElastica is known as classical curve that is a solution of variational problem, which minimize a thin inextensible wire's bending energy. Studies on elastica has been conducted in Euclidean space firstly, then it has been extended to Riemannian manifold by giving different characterizations. In this paper, we focus on energy of the elastic curve in a Lie group. We attepmt to compute its energy by using geometric description of the curvature and the torsion of the trajectory of the elastic curve of the trajectory of the moving particle in the Lie group. Finally, we also investigate the relation between energy of the elastic curve and energy of the same curve in Frenet vector fields in the Lie group.en_US
dc.identifier.doi10.5831/HMJ.2017.39.4.637
dc.identifier.endpage647en_US
dc.identifier.issn1225-293X
dc.identifier.issn2288-6176
dc.identifier.issue4en_US
dc.identifier.startpage637en_US
dc.identifier.urihttps://dx.doi.org/10.5831/HMJ.2017.39.4.637
dc.identifier.urihttps://hdl.handle.net/20.500.12639/813
dc.identifier.volume39en_US
dc.identifier.wosWOS:000429595900014
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherHONAM MATHEMATICAL SOCen_US
dc.relation.ispartofHONAM MATHEMATICAL JOURNALen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectenergyen_US
dc.subjectLie groupen_US
dc.subjectelasticaen_US
dc.subjectFrenet vectorsen_US
dc.titleA NEW APPROACH ON THE CURVATURE DEPENDENT ENERGY FOR ELASTIC CURVES IN A LIE GROUPen_US
dc.typeArticle

Dosyalar