Correlation value determined to increase Salmonella prediction success of deep neural network for agricultural waters

dc.authorscopusid57190372204
dc.authorscopusid57204834372
dc.authorscopusid57190438231
dc.authorwosidTopalcengiz, Zeynal/AAY-3051-2021
dc.contributor.authorBuyrukoğlu, Selim
dc.contributor.authorYılmaz, Yıldıran
dc.contributor.authorTopalcengiz, Zeynal
dc.date.accessioned2022-09-04T10:26:59Z
dc.date.available2022-09-04T10:26:59Z
dc.date.issued2022
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Gıda Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Gıda Mühendisliği Bölümüen_US
dc.description.abstractThe use of computer-based tools has been becoming popular in the field of produce safety. Various algorithms have been applied to predict the population and presence of indicator microorganisms and pathogens in agricultural water sources. The purpose of this study is to improve the Salmonella prediction success of deep feed-forward neural network (DFNN) in agricultural surface waters with a determined correlation value based on selected features. Datasets were collected from six agricultural ponds in Central Florida. The most successful physicochemical and environmental features were selected by the gain ratio for the prediction of generic Escherichia coli population with machine learning algorithms (decision tree, random forest, support vector machine). Salmonella prediction success of DFNN was evaluated with dataset including selected environmental and physicochemical features combined with predicted E. coli populations with and without correlation value. The performance of correlation value was evaluated with all possible mathematical dataset combinations (nCr) of six ponds. The higher accuracy performances (%) were achieved through DFNN analyses with correlation value between 88.89 and 98.41 compared to values with no correlation value from 83.68 to 96.99 for all dataset combinations. The findings emphasize the success of determined correlation value for the prediction of Salmonella presence in agricultural surface waters.en_US
dc.description.sponsorshipCankiri Karatekin Universityen_US
dc.description.sponsorshipThis study was supported by Cankiri Karatekin University.en_US
dc.identifier.doi10.1007/s10661-022-10050-7
dc.identifier.issn0167-6369
dc.identifier.issn1573-2959
dc.identifier.issue5en_US
dc.identifier.orcid0000-0002-2113-7319
dc.identifier.pmid35435507
dc.identifier.scopus2-s2.0-85128334056
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10661-022-10050-7
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4684
dc.identifier.volume194en_US
dc.identifier.wosWOS:000783510200003
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorTopalcengiz, Zeynal
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofEnvironmental Monitoring And Assessmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCorrelation value; Support vector machine; Random forest; Deep neural network; Salmonellaen_US
dc.subjectIrrigation Water; Spp.; Colien_US
dc.titleCorrelation value determined to increase Salmonella prediction success of deep neural network for agricultural watersen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4684.pdf
Boyut:
1.22 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text