Exploring the applicability of the experiment-based ANN and LSTM models for streamflow estimation

dc.contributor.authorAkiner, Muhammed Ernur
dc.contributor.authorKartal, Veysi
dc.contributor.authorGuzeler, Anil Can
dc.contributor.authorKarakoyun, Erkan
dc.date.accessioned2024-12-14T22:07:16Z
dc.date.available2024-12-14T22:07:16Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe Ye & scedil;il & imath;rmak River Basin in northern T & uuml;rkiye is crucial for the region's water supply, agriculture, hydroelectric power generation, and clean drinking water. The primary goal of this study is to determine which modeling approach is most appropriate for various locations within the basin and how well meteorological data can predict river flow rates. Hydrological and meteorological forecasting both depend on the prediction of river flow rates. An artificial neural network (ANN), Univariate and Multivariate Long Short-Term Memory (LSTM) models have been utilized for streamflow forecasting. This research aims to determine the best model for several provinces in the basin area and give decision-makers a tool for reliable river flow rate estimates by combining LSTM and ANN models. According to research findings, the supervised multivariate LSTM model performed better than the unsupervised model in accuracy and precision. The sliding window methodology is suitable for estimating river flow based on meteorological datasets because it offers a primary method for reinterpreting time-series data in a supervised learning style. Compared to LSTM models, the ANN model that has been statistically optimized through experiments (DoE) design performs better in forecasting the river flow rate in the Ye & scedil;il & imath;rmak River basin (R2 = 0.98, RMSE = 0.18). The study's findings provided prospective cognitive models for the strategic management of water resources by forecasting future data from flow monitoring stations.en_US
dc.description.sponsorshipSiirt University; State Water Worksen_US
dc.description.sponsorshipSpecial thanks to the General Directorate of Meteorology (MGM) and State Water Works (DSI) for providing the database used in this study.en_US
dc.identifier.doi10.1007/s12145-024-01332-4
dc.identifier.endpage3135en_US
dc.identifier.issn1865-0473
dc.identifier.issn1865-0481
dc.identifier.issue4en_US
dc.identifier.orcid0000-0003-4671-1281
dc.identifier.orcidKARAKOYUN, ERKAN
dc.identifier.orcid0000-0003-2821-9103
dc.identifier.orcid0000-0002-5192-2473
dc.identifier.scopus2-s2.0-85193781732
dc.identifier.scopusqualityQ2
dc.identifier.startpage3111en_US
dc.identifier.urihttps://doi.org/10.1007/s12145-024-01332-4
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6508
dc.identifier.volume17en_US
dc.identifier.wosWOS:001230362200001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofEarth Science Informaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_20241214
dc.subjectArtificial neural networken_US
dc.subjectDesign of experimentsen_US
dc.subjectLong short-term memoryen_US
dc.subjectRiver flow rateen_US
dc.subjectSliding window methodologyen_US
dc.titleExploring the applicability of the experiment-based ANN and LSTM models for streamflow estimationen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6508.pdf
Boyut:
3.28 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text