Novel Antimicrobial Peptide Design Using Motif Match Score Representation

dc.contributor.authorSoylemez, Ummu Gulsum
dc.contributor.authorYousef, Malik
dc.contributor.authorBakir-Gungor, Burcu
dc.date.accessioned2024-12-14T22:04:53Z
dc.date.available2024-12-14T22:04:53Z
dc.date.issued2024
dc.description.abstractAntimicrobial peptides (AMPs) have drawn the interest of the researchers since they offer an alternative to the traditional antibiotics in the fight against antibiotic resistance and they exhibit additional pharmaceutically significant properties. Recently, computational approaches attemp to reveal how antibacterial activity is determined from a machine learning perspective and they aim to search and find the biological cues or characteristics that control antimicrobial activity via incorporating motif match scores. This study is dedicated to the development of a machine learning framework aimed at devising novel antimicrobial peptide (AMP) sequences potentially effective against Gram-positive /Gram-negative bacteria. In order to design newly generated sequences classified as either AMP or non-AMP, various classification models were trained. These novel sequences underwent validation utilizingthe “DBAASP:strain-specific antibacterial prediction based on machine learning approaches and data on AMP sequences” tool. The findings presented herein represent a significant stride in this computational research, streamlining the process of AMP creation or modification within wet lab environments. IEEEen_US
dc.identifier.doi10.1109/TCBB.2024.3413021
dc.identifier.endpage12en_US
dc.identifier.issn1545-5963
dc.identifier.scopus2-s2.0-85196060857
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1109/TCBB.2024.3413021
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6414
dc.identifier.wosWOS:001375991100008
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE/ACM Transactions on Computational Biology and Bioinformaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241214
dc.subjectAmino acidsen_US
dc.subjectAntimicrobial peptide predictionen_US
dc.subjectComputational modelingen_US
dc.subjectGram-negative bacteriaen_US
dc.subjectGram-positive bacteriaen_US
dc.subjectImmune systemen_US
dc.subjectMachine learningen_US
dc.subjectMicroorganismsen_US
dc.subjectmotif match scoreen_US
dc.subjectnovel peptidesen_US
dc.subjectPeptidesen_US
dc.subjectSupport vector machinesen_US
dc.titleNovel Antimicrobial Peptide Design Using Motif Match Score Representationen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6414.pdf
Boyut:
2.89 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text