Improving Arithmetic Optimization Algorithm Through Modified Opposition-based Learning Mechanism

dc.authorscopusid57201318149
dc.authorscopusid57186395300
dc.authorscopusid57211714693
dc.authorscopusid57423027600
dc.contributor.authorİzci, D.
dc.contributor.authorEkinci, S.
dc.contributor.authorEker, Erdal
dc.contributor.authorDündar, Ahmet
dc.date.accessioned2022-09-04T10:26:53Z
dc.date.available2022-09-04T10:26:53Z
dc.date.issued2021
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Otel Lokanta ve İkram Hizmetleri Bölümüen_US
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Otel Lokanta ve İkram Hizmetleri Bölümüen_US
dc.description5h International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2021 -- 21 October 2021 through 23 October 2021 -- -- 179103en_US
dc.description.abstractThis study aims to present a novel hybrid metaheuristic algorithm through improving the performance of the arithmetic optimization algorithm (AOA). A modified version of opposition-based learning mechanism (mOBL) has been used to provide the improvement. The greater performance of the improved version of the arithmetic optimization algorithm (mOBL-AOA) has been demonstrated through statistical and non-parametric tests by using benchmark functions of Schwefel 2.22, Rosenbrock, Step, Schwefel, Ackley and Penalized. The results were demonstrated comparatively by using sine cosine, Lévy flight distribution and the original arithmetic optimization algorithms. The performed comparative analyses have confirmed the highly competitive performance of the mOBL-AOA algorithm in terms of tackling with the the optimization problems. © 2021 IEEE.en_US
dc.identifier.doi10.1109/ISMSIT52890.2021.9604531
dc.identifier.endpage5en_US
dc.identifier.isbn9781665449304
dc.identifier.scopus2-s2.0-85123302709
dc.identifier.scopusqualityN/A
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4628
dc.indekslendigikaynakScopus
dc.institutionauthorEker, Erdal
dc.institutionauthorDündar, Ahmet
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofISMSIT 2021 - 5th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectarithmetic optimization algorithmen_US
dc.subjectbenchmark functionsen_US
dc.subjectopposition-based learningen_US
dc.subjectBenchmarkingen_US
dc.subjectLearning algorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectArithmetic optimization algorithmen_US
dc.subjectBenchmark functionsen_US
dc.subjectHybrid metaheuristic algorithmsen_US
dc.subjectLearning mechanismen_US
dc.subjectNonparametric testsen_US
dc.subjectOpposition-based learningen_US
dc.subjectOptimization algorithmsen_US
dc.subjectPerformanceen_US
dc.subjectRosenbrocken_US
dc.subjectSchwefelen_US
dc.subjectOptimizationen_US
dc.titleImproving Arithmetic Optimization Algorithm Through Modified Opposition-based Learning Mechanismen_US
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4628.pdf
Boyut:
1000.59 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text