Prediction of groundwater drought based on hydro-meteorological insights via machine learning approaches

dc.contributor.authorKartal, Veysi
dc.contributor.authorKatipoglu, Okan Mert
dc.contributor.authorKarakoyun, Erkan
dc.contributor.authorSimsek, Oguz
dc.contributor.authorYavuz, Veysel Suleyman
dc.contributor.authorAriman, Sema
dc.date.accessioned2024-12-14T22:07:19Z
dc.date.available2024-12-14T22:07:19Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThis study aims to predict groundwater drought-based meteorological drought index using machine learning instead of traditional approaches. Groundwater drought (GWD) was predicted using machine learning methodologies such as Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Least Squares Boosting Tree (LSBT), Generalized Linear Regression (GLR) and kNearest Neighbours (KNN). In addition, monthly, seasonal, and annual drought indices such as the Standardised Precipitation-Evapotranspiration Index (SPEI), China Z Index (CZI), Standardised Precipitation Index (SPI), ZScore Index (ZSI), Decile Index (DI), Percent of Normal Index (PNI) and Rainfall Anomaly Index (RAI) were used to analyse the drought of groundwater. These traditional drought indices were modified for the assessment of groundwater drought. Moreover, groundwater drought was predicted based on the hydro-meteorological parameters (temperature, relative humidity, wind speed, rainfall, groundwater level). The applied models' performances were evaluated via Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Akaike Information Criterion (AIC), R-squared (R2), Mean Bias Error (MBE), Bias Factor, and Variance Account Factor (VAF). Linear SVM is generally the best model for predicting GWD, while GLR is the second-best performing model. The KNN algorithm obtained the weakest performances. Although all types of drought and wet categories were observed, normal drought occurred more than in the other drought and wet categories. This study can contribute to the assessment of groundwater drought in regions where there is no groundwater station.en_US
dc.identifier.doi10.1016/j.pce.2024.103757
dc.identifier.issn1474-7065
dc.identifier.issn1873-5193
dc.identifier.orcid0000-0003-2821-9103
dc.identifier.orcidSIMSEK, OGUZ
dc.identifier.orcid0000-0001-6324-0229
dc.identifier.orcid0000-0002-5867-7677
dc.identifier.orcid0000-0003-4671-1281
dc.identifier.scopus2-s2.0-85206160810
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.pce.2024.103757
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6547
dc.identifier.volume136en_US
dc.identifier.wosWOS:001335585300001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofPhysics and Chemistry of The Earthen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241214
dc.subjectGroundwater levelen_US
dc.subjectGroundwater droughten_US
dc.subjectDrought indicesen_US
dc.subjectPredictionen_US
dc.subjectMachine learningen_US
dc.subjectCognitive approachesen_US
dc.titlePrediction of groundwater drought based on hydro-meteorological insights via machine learning approachesen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6547.pdf
Boyut:
24.69 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text