On comparison of approximate solutions for linear and nonlinear schrodinger equations

dc.contributor.authorKörpınar, Zeliha
dc.date.accessioned2020-01-29T18:51:50Z
dc.date.available2020-01-29T18:51:50Z
dc.date.issued2019
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümüen_US
dc.description.abstractIn this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrodinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions.en_US
dc.identifier.doi10.4025/actascitechnol.v41i1.36596
dc.identifier.issn1806-2563
dc.identifier.issn1807-8664
dc.identifier.urihttps://dx.doi.org/10.4025/actascitechnol.v41i1.36596
dc.identifier.urihttps://hdl.handle.net/20.500.12639/720
dc.identifier.volume41en_US
dc.identifier.wosWOS:000496531700049
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherUNIV ESTADUAL MARINGA, PRO-REITORIA PESQUISA POS-GRADUACAOen_US
dc.relation.ispartofACTA SCIENTIARUM-TECHNOLOGYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectresidual power series methoden_US
dc.subjecthomotopy analysis transform methoden_US
dc.subjectSchrodinger equationsen_US
dc.titleOn comparison of approximate solutions for linear and nonlinear schrodinger equationsen_US
dc.typeArticle

Dosyalar