Multi-model CNN fusion for sperm morphology analysis

dc.authorscopusid56780421700
dc.authorscopusid57191620768
dc.authorscopusid7005593269
dc.contributor.authorYüzkat, Mecit
dc.contributor.authorİlhan, H.O.
dc.contributor.authorAydın, N.
dc.date.accessioned2022-09-04T10:26:58Z
dc.date.available2022-09-04T10:26:58Z
dc.date.issued2021
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractInfertility is a common disorder affecting 20% of couples worldwide. Furthermore, 40% of all cases are related to male infertility. The first step in the determination of male infertility is semen analysis. The morphology, concentration, and motility of sperm are important characteristics evaluated by experts during semen analysis. Most laboratories perform the tests manually. However, manual semen analysis requires much time and is subject to observer variability during the evaluation. Therefore, computer-assisted systems are required. Additionally, to obtain more objective results, a large amount of data is necessary. Deep learning networks, which have become popular in recent years, are used for processing and analysing such quantities of data. Convolutional neural networks (CNNs) are a class of deep learning algorithm that are used extensively for processing and analysing images. In this study, six different CNN models were created for completely automating the morphological classification of sperm images. Additionally, two decision-level fusion techniques namely hard-voting and soft-voting were applied over these CNNs. To evaluate the performance of the proposed approach, three publicly available sperm morphology data sets were used in the experimental tests. For an objective analysis, a cross-validation technique was applied by dividing the data sets into five sub-sets. In addition, various data augmentation scales and mini-batch analysis were employed to obtain the highest classification accuracies. Finally, in the classification, accuracies 90.73%, 85.18% and 71.91% were obtained for the SMIDS, HuSHeM and SCIAN-Morpho data sets, respectively, using the soft-voting based fusion approach over the six created CNN models. The results suggested that the proposed approach could automatically classify as well as achieve high success in three different data sets. © 2021 Elsevier Ltden_US
dc.identifier.doi10.1016/j.compbiomed.2021.104790
dc.identifier.issn0010-4825
dc.identifier.pmid34492520
dc.identifier.scopus2-s2.0-85114766868
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4674
dc.identifier.volume137en_US
dc.identifier.wosWOS:000704295000007
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorYüzkat, Mecit
dc.language.isoen
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputers in Biology and Medicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional neural network (CNN)en_US
dc.subjectData augmentationen_US
dc.subjectDecision level fusionen_US
dc.subjectSperm morphologyen_US
dc.subjectClassification (of information)en_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectLearning algorithmsen_US
dc.subjectClassification accuracyen_US
dc.subjectConvolutional neural networken_US
dc.subjectData augmentationen_US
dc.subjectData seten_US
dc.subjectDecision level fusionen_US
dc.subjectMale infertilityen_US
dc.subjectNeural network modelen_US
dc.subjectSoft votingen_US
dc.subjectSperm morphologyen_US
dc.subjectMorphologyen_US
dc.subjectArticleen_US
dc.subjectautomationen_US
dc.subjectclassification algorithmen_US
dc.subjectclinical articleen_US
dc.subjectconvolutional neural networken_US
dc.subjectdata accuracyen_US
dc.subjectdata analysis softwareen_US
dc.subjectdeep learningen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectk fold cross validationen_US
dc.subjectmaleen_US
dc.subjectmale infertilityen_US
dc.subjectperformance indicatoren_US
dc.subjectsemen analysisen_US
dc.subjectspermatozoon motilityen_US
dc.subjectalgorithmen_US
dc.subjectcell counten_US
dc.subjectspermatozoonen_US
dc.subjectAlgorithmsen_US
dc.subjectCell Counten_US
dc.subjectHumansen_US
dc.subjectMaleen_US
dc.subjectNeural Networks, Computeren_US
dc.subjectSemen Analysisen_US
dc.subjectSpermatozoaen_US
dc.titleMulti-model CNN fusion for sperm morphology analysisen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4674.pdf
Boyut:
5.7 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text