Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence

dc.contributor.authorUlkir, Osman
dc.contributor.authorBayraklilar, Mehmet Said
dc.contributor.authorKuncan, Melih
dc.date.accessioned2024-12-14T22:07:22Z
dc.date.available2024-12-14T22:07:22Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe manufacturing sector's interest in additive manufacturing (AM) methods is increasing daily. The increase in energy consumption requires optimization of energy consumption in rapid prototyping technology. This study aims to minimize energy consumption with determined production parameters. Four machine learning algorithms are preferred to model the energy consumption of the fused deposition modeling-based 3D printer. The real-time measured test sample data were trained, and the prediction model between the parameters of 3D fabrication and the energy consumption was created. The predicted model was evaluated using five performance criteria. These are mean square error (MSE), mean absolute error (MAE), root mean squared error (RMSE), R-squared (R2), and explained variance score (EVS). It has been seen that the Gaussian Process Regression model predicts energy consumption in the AM with high accuracy: R2 = 0.99, EVS = 0.99, MAE = 0.016, RMSE = 0.022, and MSE = 0.00049.en_US
dc.identifier.doi10.1089/3dp.2023.0189
dc.identifier.endpagee1920en_US
dc.identifier.issn2329-7662
dc.identifier.issn2329-7670
dc.identifier.issue5en_US
dc.identifier.orcid0000-0002-1095-0160
dc.identifier.scopus2-s2.0-85180282994
dc.identifier.scopusqualityQ1
dc.identifier.startpagee1909en_US
dc.identifier.urihttps://doi.org/10.1089/3dp.2023.0189
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6577
dc.identifier.volume11en_US
dc.identifier.wosWOS:001138544300001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMary Ann Liebert, Incen_US
dc.relation.ispartof3d Printing and Additive Manufacturingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241214
dc.subjectenergy consumptionen_US
dc.subjectadditive manufacturingen_US
dc.subjectmachine learningen_US
dc.subjectfused deposition modelingen_US
dc.subject3D printeren_US
dc.titleEnergy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligenceen_US
dc.typeArticle

Dosyalar