Segmentation of Railway Rails Using SAM

dc.contributor.authorSevi, Mehmet
dc.contributor.authorAydin, Ilhan
dc.contributor.authorSener, Taha Kubilay
dc.date.accessioned2024-12-14T22:04:52Z
dc.date.available2024-12-14T22:04:52Z
dc.date.issued2023
dc.description4th International Conference on Data Analytics for Business and Industry, ICDABI 2023 -- 25 October 2023 through 27 October 2023 -- Virtual, Online -- 201891en_US
dc.description.abstractRailways play a pivotal role in transportation infrastructure, but defects within them can lead to accidents and safety concerns. This article introduces an innovative approach for the automated segmentation of railway rails in images using the Segment Anything (SAM) model. SAM, a versatile image segmentation architecture, demonstrates the ability to segment objects without the need for extensive training data. In this study, the SAM model was applied to high-resolution railway images from the RailSem19 dataset, comprising 8,500 images. The results were remarkable, with an impressive, predicted Intersection over Union (IoU) score of 0.9760 for the left rail and 0.9595 for the right rail. This breakthrough offers a promising solution for enhancing railway safety and maintenance, showcasing SAM's potential to revolutionize image segmentation techniques in various applications. © 2023 IEEE.en_US
dc.description.sponsorshipFUBAP; Firat University Scientific Research Projects Management Unit, FÜBAP, (ADEB.2022.02)en_US
dc.identifier.doi10.1109/ICDABI60145.2023.10629571
dc.identifier.endpage213en_US
dc.identifier.isbn979-835036978-6
dc.identifier.scopus2-s2.0-85202445926
dc.identifier.scopusqualityN/A
dc.identifier.startpage211en_US
dc.identifier.urihttps://doi.org/10.1109/ICDABI60145.2023.10629571
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6390
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 4th International Conference on Data Analytics for Business and Industry, ICDABI 2023en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241214
dc.subjectdeep learningen_US
dc.subjectrailwayen_US
dc.subjectSAMen_US
dc.subjectsegmentationen_US
dc.titleSegmentation of Railway Rails Using SAMen_US
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6390.pdf
Boyut:
1.1 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text