Additive Manufactured Strain Sensor Using Stereolithography Method with Photopolymer Material
| dc.authorwosid | Ülkir, Osman/AAI-2940-2020 | |
| dc.authorwosid | Ertugrul, Ishak/AAP-5865-2020 | |
| dc.authorwosid | Ersoy, Sezgin/A-7594-2019 | |
| dc.authorwosid | Ragulskis, Minvydas/A-1546-2008 | |
| dc.contributor.author | Ertugrul, Ishak | |
| dc.contributor.author | Ulkir, Osman | |
| dc.contributor.author | Ersoy, Sezgin | |
| dc.contributor.author | Ragulskis, Minvydas | |
| dc.date.accessioned | 2023-11-10T21:10:05Z | |
| dc.date.available | 2023-11-10T21:10:05Z | |
| dc.date.issued | 2023 | |
| dc.department | MAÜN | en_US |
| dc.description.abstract | As a result of the developments in additive manufacturing (AM) technology, 3D printing is transforming from a method used only in rapid prototyping to a technique used to produce large-scale equipment. This study presents the fabrication and experimental studies of a 3D-printed strain sensor that can be used directly in soft applications. Photopolymer-based conductive and flexible ultraviolet (UV) resin materials are used in the fabrication of the sensor. A Stereolithography (SLA)-based printer is preferred for 3D fabrication. The bottom base of the sensor, which consists of two parts, is produced from flexible UV resin, while the channels that should be conductive are produced from conductive UV resin. In total, a strain sensor with a thickness of 2 mm was produced. Experimental studies were carried out under loading and unloading conditions to observe the hysteresis effect of the sensor. The results showed a close linear relationship between the strain sensor and the measured resistance value. In addition, tensile test specimens were produced to observe the behavior of conductive and non-conductive materials. The tensile strength values obtained from the test results will provide information about the sensor placement. In addition, the flexible structure of the strain sensor will ensure its usability in many soft applications. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) within scope of Scientist Support Program | en_US |
| dc.description.sponsorship | This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) within the scope of the Scientist Support Program. | en_US |
| dc.identifier.doi | 10.3390/polym15040991 | |
| dc.identifier.issn | 2073-4360 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.orcid | 0000-0001-9586-0377 | |
| dc.identifier.orcid | Ersoy, Sezgin | |
| dc.identifier.orcid | 0000-0002-4029-5603 | |
| dc.identifier.orcid | 0000-0002-1095-0160 | |
| dc.identifier.orcid | 0000-0002-3348-9717 | |
| dc.identifier.pmid | 36850274 | |
| dc.identifier.scopus | 2-s2.0-85149044500 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.3390/polym15040991 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/5418 | |
| dc.identifier.volume | 15 | en_US |
| dc.identifier.wos | WOS:000941689600001 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.indekslendigikaynak | PubMed | |
| dc.language.iso | en | |
| dc.publisher | Mdpi | en_US |
| dc.relation.ispartof | Polymers | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Additive Manufacturing | en_US |
| dc.subject | Photopolymer | en_US |
| dc.subject | Strain Sensor | en_US |
| dc.subject | Soft Application | en_US |
| dc.subject | Stereolithography | en_US |
| dc.subject | 3d Printing | en_US |
| dc.title | Additive Manufactured Strain Sensor Using Stereolithography Method with Photopolymer Material | en_US |
| dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 5418.pdf
- Boyut:
- 2.14 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text










