A machine learning assisted designing and chemical space generation of benzophenone based organic semiconductors with low lying LUMO energies

dc.contributor.authorGüleryüz, Cihat
dc.contributor.authorHassan, Abrar Ul
dc.contributor.authorGüleryüz, Hasan
dc.contributor.authorKyhoiesh, Hussein Ali Kadhim
dc.contributor.authorMahmoud, Mohammed Hesham Hassan
dc.date.accessioned2025-10-03T08:55:50Z
dc.date.available2025-10-03T08:55:50Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractCurrent study presents a machine learning (ML) approach to design benzophenone-based organic chromophore with their lowest possible LUMO energy (E<inf>LUMO</inf>). A dataset of their 1142 donors is collected from literature and their molecular descriptors are designed by using RDKit. Among various models, the Random Forest regression model produces accurate results to predict their E<inf>LUMO</inf> values. Based on these predictions, their 5000 new donors are designed with their Synthetic Accessibility Likelihood Index (SALI) scores. Their SHAP value analysis reveals that their electro topological state indices are the most critical descriptors to lowering E<inf>LUMOs</inf>. The top-performing donor are further extended with acceptors and their photovoltaic (PV) properties by density functional theory (DFT). Their results show their maximum open-circuit voltage (V<inf>oc</inf>) of 2.30 V, a short-circuit current (J<inf>sc</inf>) of 47.19 mA/cm2, and a light-harvesting efficiency (LHE) of 93 %. This study demonstrates the potential of ML assisted design to design new organic chromophores. © 2025 Elsevier B.V., All rights reserved.en_US
dc.identifier.doi10.1016/j.mseb.2025.118212
dc.identifier.scopus2-s2.0-105000042762
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.mseb.2025.118212
dc.identifier.urihttps://hdl.handle.net/20.500.12639/7347
dc.identifier.volume317en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Ltden_US
dc.relation.ispartofMaterials Science and Engineering: Ben_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_Scopus_20251003
dc.subjectMachine Learning: Lumo Energyen_US
dc.subjectOrganic Semiconductorsen_US
dc.subjectPhotovoltaic Parametersen_US
dc.subjectSali Scoreen_US
dc.subjectDecision Treesen_US
dc.subjectOpen Circuit Voltageen_US
dc.subjectOrganic Semiconductor Materialsen_US
dc.subjectPhotovoltaicsen_US
dc.subject'currenten_US
dc.subjectChemical Spaceen_US
dc.subjectLumo Energyen_US
dc.subjectMachine Learning: Lumo Energyen_US
dc.subjectMachine-learningen_US
dc.subjectOrganic Chromophoresen_US
dc.subjectOrganicsen_US
dc.subjectPhotovoltaic Parametersen_US
dc.subjectSpace Generationen_US
dc.subjectSynthetic Accessibility Likelihood Index Scoreen_US
dc.subjectChromophoresen_US
dc.titleA machine learning assisted designing and chemical space generation of benzophenone based organic semiconductors with low lying LUMO energiesen_US
dc.typeArticle

Dosyalar