A machine learning assisted designing and chemical space generation of benzophenone based organic semiconductors with low lying LUMO energies
| dc.contributor.author | Güleryüz, Cihat | |
| dc.contributor.author | Hassan, Abrar Ul | |
| dc.contributor.author | Güleryüz, Hasan | |
| dc.contributor.author | Kyhoiesh, Hussein Ali Kadhim | |
| dc.contributor.author | Mahmoud, Mohammed Hesham Hassan | |
| dc.date.accessioned | 2025-10-03T08:55:50Z | |
| dc.date.available | 2025-10-03T08:55:50Z | |
| dc.date.issued | 2025 | |
| dc.department | Muş Alparslan Üniversitesi | en_US |
| dc.description.abstract | Current study presents a machine learning (ML) approach to design benzophenone-based organic chromophore with their lowest possible LUMO energy (E<inf>LUMO</inf>). A dataset of their 1142 donors is collected from literature and their molecular descriptors are designed by using RDKit. Among various models, the Random Forest regression model produces accurate results to predict their E<inf>LUMO</inf> values. Based on these predictions, their 5000 new donors are designed with their Synthetic Accessibility Likelihood Index (SALI) scores. Their SHAP value analysis reveals that their electro topological state indices are the most critical descriptors to lowering E<inf>LUMOs</inf>. The top-performing donor are further extended with acceptors and their photovoltaic (PV) properties by density functional theory (DFT). Their results show their maximum open-circuit voltage (V<inf>oc</inf>) of 2.30 V, a short-circuit current (J<inf>sc</inf>) of 47.19 mA/cm2, and a light-harvesting efficiency (LHE) of 93 %. This study demonstrates the potential of ML assisted design to design new organic chromophores. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.mseb.2025.118212 | |
| dc.identifier.scopus | 2-s2.0-105000042762 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.mseb.2025.118212 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/7347 | |
| dc.identifier.volume | 317 | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Elsevier Ltd | en_US |
| dc.relation.ispartof | Materials Science and Engineering: B | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.snmz | KA_Scopus_20251003 | |
| dc.subject | Machine Learning: Lumo Energy | en_US |
| dc.subject | Organic Semiconductors | en_US |
| dc.subject | Photovoltaic Parameters | en_US |
| dc.subject | Sali Score | en_US |
| dc.subject | Decision Trees | en_US |
| dc.subject | Open Circuit Voltage | en_US |
| dc.subject | Organic Semiconductor Materials | en_US |
| dc.subject | Photovoltaics | en_US |
| dc.subject | 'current | en_US |
| dc.subject | Chemical Space | en_US |
| dc.subject | Lumo Energy | en_US |
| dc.subject | Machine Learning: Lumo Energy | en_US |
| dc.subject | Machine-learning | en_US |
| dc.subject | Organic Chromophores | en_US |
| dc.subject | Organics | en_US |
| dc.subject | Photovoltaic Parameters | en_US |
| dc.subject | Space Generation | en_US |
| dc.subject | Synthetic Accessibility Likelihood Index Score | en_US |
| dc.subject | Chromophores | en_US |
| dc.title | A machine learning assisted designing and chemical space generation of benzophenone based organic semiconductors with low lying LUMO energies | en_US |
| dc.type | Article |










