SCANM: A Novel Hybrid Metaheuristic Algorithm and its Comparative Performance Assessment

dc.authorscopusid26031603700
dc.authorscopusid57756094600
dc.authorscopusid57201318149
dc.authorscopusid57211714693
dc.authorwosidİzci, Davut/T-6000-2019
dc.contributor.authorKayri, Murat
dc.contributor.authorİpek, Cengiz
dc.contributor.authorİzci, Davut
dc.contributor.authorEker, Erdal
dc.date.accessioned2022-09-04T10:27:12Z
dc.date.available2022-09-04T10:27:12Z
dc.date.issued2022
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.description.abstractThis paper proposes a novel sine-cosine and Nelder-Mead (SCANM) algorithm which hybridizes the sine-cosine algorithm (SCA) and Nelder-Mead (NM) local search method. The original version of SCA is prone to early convergence at the local minimum. The purpose of the SCANM algorithm is to overcome this issue. Thus, it aims to overcome this issue with the employment of the NM method. The SCANM algorithm was firstly compared with the SCA algorithm through 23 well-known test functions. The statistical assessment confirmed the better performance of the proposed algorithm. The comparative convergence profiles further demonstrated the significant performance improvement of the proposed SCANM algorithm. Besides, a non-parametric test was performed, and the results that showed the ability of the proposed approach were not by coincidence. A popular and well-performed metaheuristic algorithm known as grey wolf optimization was also used along with the recent and promising two other algorithms (Archimedes optimization and Harris hawks optimization) to comparatively demonstrate the performance of the SCANM algorithm against well-known classical benchmark functions and CEC 2017 test suite. The comparative assessment showed that the SCANM algorithm has promising performance for optimization problems. The non-parametric test further verified the better capability of the proposed SCANM algorithm for optimization problems.en_US
dc.identifier.doi10.54614/electrica.2022.21112
dc.identifier.endpage159en_US
dc.identifier.issn2619-9831
dc.identifier.issue2en_US
dc.identifier.orcid0000-0001-8359-0875
dc.identifier.scopus2-s2.0-85132449598
dc.identifier.scopusqualityQ3
dc.identifier.startpage143en_US
dc.identifier.trdizinid529352
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4756
dc.identifier.urihttps://doi.org/10.54614/electrica.2022.21112
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/529352
dc.identifier.volume22en_US
dc.identifier.wosWOS:000834655200003
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.institutionauthorEker, Erdal
dc.language.isoen
dc.publisherIstanbul Univ-Cerrahpasaen_US
dc.relation.ispartofElectricaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSine-cosine algorithm; Nelder-Mead simplex search method; hybrid algorithm; benchmark functionsen_US
dc.subjectOptimizationen_US
dc.titleSCANM: A Novel Hybrid Metaheuristic Algorithm and its Comparative Performance Assessmenten_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4756.pdf
Boyut:
6.78 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text