Forecasting of electromagnetic radiation time series: An empirical comparative approach

dc.contributor.authorPala, Zeydin
dc.contributor.authorÜnlük İ.H.
dc.contributor.authorYaldız E.
dc.date.accessioned2020-01-29T18:53:47Z
dc.date.available2020-01-29T18:53:47Z
dc.date.issued2019
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThis study compares the performance of time series models for forecasting electromagnetic radiation levels at Yesilce neighborhood in Mus, Turkey. To make successful predictions using EMF time series, which is obtained in the 36-month measurement process using the calibrated Wavecontrol SMP2 device, nine different models were used. In addition to Mean, Naive, Seasonal Naïve, Drift, STLF and TBATS standard models, more advanced ANN models such as NNETAR, MLP and ELM used in the R software environment for forecasting. In order to determine the accuracy of the models used in the EMF time series used in the study, mean absolute error (MAE), relative mean absolute error (RMAE) metrics were used. The best results obtained with NNETAR, Seasonal Naïve, MLP, STLF, TBATS, and ELM models, respectively. © ACESen_US
dc.identifier.endpage1241en_US
dc.identifier.issn1054-4887
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85072982863
dc.identifier.scopusqualityQ3
dc.identifier.startpage1238en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12639/1242
dc.identifier.volume34en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherApplied Computational Electromagnetics Society (ACES)en_US
dc.relation.ispartofApplied Computational Electromagnetics Society Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectromagnetic radiationen_US
dc.subjectELMen_US
dc.subjectForecasting modelsen_US
dc.subjectMLPen_US
dc.subjectNNETARen_US
dc.subjectTime seriesen_US
dc.titleForecasting of electromagnetic radiation time series: An empirical comparative approachen_US
dc.typeArticle

Dosyalar