Efficacy of machine learning models for the prediction of death occurrence and counts associated with foodborne illnesses and hospitalizations in the United States

dc.contributor.authorBaker, Mohammed Rashad
dc.contributor.authorBuyrukoglu, Selim
dc.contributor.authorBuyrukoglu, Gonca
dc.contributor.authorMoreira, Juan
dc.contributor.authorTopalcengiz, Zeynal
dc.date.accessioned2025-10-03T08:55:50Z
dc.date.available2025-10-03T08:55:50Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractFoodborne outbreak data released through national surveillance systems provides essential information about the results of investigations. This study evaluates the efficacy of machine learning (ML) models for the prediction of death occurrence and counts associated with foodborne illnesses and hospitalizations in the United States. Confirmed foodborne outbreaks were obtained from the Centers for Disease Control and Prevention's National Outbreak Reporting System (NORS). Foodborne pathogens causing at least 10 deaths in total were selected for analysis. The binary classification performance (accuracy, %) and prediction efficacy of ML models (mean absolute errors, MAE) were used for evaluation. A total of 10,069 foodborne outbreaks with confirmed single etiology resulted in 275,827 illnesses, 18,579 hospitalizations, and 458 deaths. Salmonella was the leading causative agent (54.23 %) of bacterial foodborne outbreaks, followed by pathogenic Escherichia coli (12.13 %). Norovirus (96.69 %) and Cyclospora cayetanensis (60.76 %) represented major causes of viral and protozoan/parasite foodborne outbreaks, respectively. The classification performance of ML models ranged from 88.9 to 94.5 % for the overall prediction of death occurrence associated with foodborne illnesses and hospitalizations. Prediction efficacy of ML models for death counts remained <0.9 with MAE, except for Listeria monocytogenes with an average MAE of 134.1 ± 11.1. This study indicates the potential use and performance of ML algorithms for the prediction of death occurrence or counts caused by foodborne etiological agents to improve public health safety based on the numbers of illnesses and hospitalizations. © 2025 Elsevier B.V., All rights reserved.en_US
dc.identifier.doi10.1016/j.mran.2025.100351
dc.identifier.issn2352-3522
dc.identifier.scopus2-s2.0-105012926749
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mran.2025.100351
dc.identifier.urihttps://hdl.handle.net/20.500.12639/7346
dc.identifier.volume30en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier B.V.en_US
dc.relation.ispartofMicrobial Risk Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_Scopus_20251003
dc.subjectBacteriaen_US
dc.subjectClassificationen_US
dc.subjectData Miningen_US
dc.subjectProtozoan/parasiteen_US
dc.subjectPublic Health Informaticsen_US
dc.subjectRegressionen_US
dc.subjectVirusen_US
dc.subjectAlgorithmen_US
dc.subjectArticleen_US
dc.subjectBacteriumen_US
dc.subjectBinary Classificationen_US
dc.subjectClassificationen_US
dc.subjectCyclospora Cayetanensisen_US
dc.subjectCyclosporiasisen_US
dc.subjectData Miningen_US
dc.subjectDeathen_US
dc.subjectDiagnostic Accuracyen_US
dc.subjectDisease Associationen_US
dc.subjectDisease Surveillanceen_US
dc.subjectEfficacy Parametersen_US
dc.subjectEpidemicen_US
dc.subjectEscherichia Coli Infectionen_US
dc.subjectFood Poisoningen_US
dc.subjectFood Safetyen_US
dc.subjectFoodborne Pathogenen_US
dc.subjectHospitalizationen_US
dc.subjectHumanen_US
dc.subjectListeria Monocytogenesen_US
dc.subjectListeriosisen_US
dc.subjectMachine Learningen_US
dc.subjectMean Absolute Erroren_US
dc.subjectNonhumanen_US
dc.subjectNorovirusen_US
dc.subjectNorovirus Infectionen_US
dc.subjectParasiteen_US
dc.subjectPathogenic Escherichia Colien_US
dc.subjectPredictionen_US
dc.subjectProtozoal Infectionen_US
dc.subjectProtozoonen_US
dc.subjectPublic Health Serviceen_US
dc.subjectSalmonellaen_US
dc.subjectSalmonella Food Poisoningen_US
dc.subjectUnited Statesen_US
dc.subjectVirusen_US
dc.subjectVirus Infectionen_US
dc.titleEfficacy of machine learning models for the prediction of death occurrence and counts associated with foodborne illnesses and hospitalizations in the United Statesen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
7346.pdf
Boyut:
1.3 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text