LS (3)-equivalence conditions of control points and application to spatial Bezier curves and surfaces
| dc.contributor.author | İncesu, Muhsin | |
| dc.date.accessioned | 2021-04-10T16:37:26Z | |
| dc.date.available | 2021-04-10T16:37:26Z | |
| dc.date.issued | 2020 | |
| dc.department | Fakülteler, Eğitim Fakültesi Matematik ve Fen Bilimleri Eğitimi Bölümü | en_US |
| dc.description | INCESU, Muhsin/0000-0003-2515-9627 | en_US |
| dc.description.abstract | Let G be a transformation group and act on X. Any elements x, y epsilon X are called the G-equivalent elements if there exist a transformation g epsilon G such that y = gx is satisfied. Similarly let A = {x(1), x(2), . . . , x(n)} and B = {y(1), y(2), . . . , y(n)} be any two subspaces of X with n-elements. Then the subspaces A and B are called the G-equivalent subspaces if there exist a transformation g epsilon G such that y(i) = gx(i) is satisfied for every i = 1, 2, . . . , n. The linear similarity transformations' group in 3 dimensional Euclidean space will be denoted by LS (3). This paper presents the G-equivalence conditions of the subspaces A and B of 3-dimensional Euclidean space E-3 with m-elements where the transformation group G = LS (3) is the linear similarity transformation group in E-3. Later the G = LS (3)-equivalence conditions of Bezier curves and surfaces are studied in terms of the rational G = LS (3) invariants of their control points. Finally by using quadratic Bezier curves, a simple letter "S" is designed and two di fferent shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are G = LS (3)-equivalent to designed letter "S". | en_US |
| dc.identifier.doi | 10.3934/math.2020084 | |
| dc.identifier.endpage | 1246 | en_US |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.scopus | 2-s2.0-85078995005 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 1216 | en_US |
| dc.identifier.uri | https://doi.org/10.3934/math.2020084 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/2312 | |
| dc.identifier.volume | 5 | en_US |
| dc.identifier.wos | WOS:000513847500034 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.institutionauthor | İncesu, Muhsin | |
| dc.language.iso | en | |
| dc.publisher | Amer Inst Mathematical Sciences-Aims | en_US |
| dc.relation.ispartof | Aims Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | linear similarity | en_US |
| dc.subject | LS(3)-Equivalence | en_US |
| dc.subject | Points systems | en_US |
| dc.subject | Generator invariants | en_US |
| dc.subject | Bezier curves | en_US |
| dc.subject | Bezier surfaces | en_US |
| dc.subject | Font design | en_US |
| dc.title | LS (3)-equivalence conditions of control points and application to spatial Bezier curves and surfaces | en_US |
| dc.type | Article |










