LS (3)-equivalence conditions of control points and application to spatial Bezier curves and surfaces

dc.contributor.authorİncesu, Muhsin
dc.date.accessioned2021-04-10T16:37:26Z
dc.date.available2021-04-10T16:37:26Z
dc.date.issued2020
dc.departmentFakülteler, Eğitim Fakültesi Matematik ve Fen Bilimleri Eğitimi Bölümüen_US
dc.descriptionINCESU, Muhsin/0000-0003-2515-9627en_US
dc.description.abstractLet G be a transformation group and act on X. Any elements x, y epsilon X are called the G-equivalent elements if there exist a transformation g epsilon G such that y = gx is satisfied. Similarly let A = {x(1), x(2), . . . , x(n)} and B = {y(1), y(2), . . . , y(n)} be any two subspaces of X with n-elements. Then the subspaces A and B are called the G-equivalent subspaces if there exist a transformation g epsilon G such that y(i) = gx(i) is satisfied for every i = 1, 2, . . . , n. The linear similarity transformations' group in 3 dimensional Euclidean space will be denoted by LS (3). This paper presents the G-equivalence conditions of the subspaces A and B of 3-dimensional Euclidean space E-3 with m-elements where the transformation group G = LS (3) is the linear similarity transformation group in E-3. Later the G = LS (3)-equivalence conditions of Bezier curves and surfaces are studied in terms of the rational G = LS (3) invariants of their control points. Finally by using quadratic Bezier curves, a simple letter "S" is designed and two di fferent shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are G = LS (3)-equivalent to designed letter "S".en_US
dc.identifier.doi10.3934/math.2020084
dc.identifier.endpage1246en_US
dc.identifier.issn2473-6988
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85078995005
dc.identifier.scopusqualityN/A
dc.identifier.startpage1216en_US
dc.identifier.urihttps://doi.org/10.3934/math.2020084
dc.identifier.urihttps://hdl.handle.net/20.500.12639/2312
dc.identifier.volume5en_US
dc.identifier.wosWOS:000513847500034
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorİncesu, Muhsin
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofAims Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectlinear similarityen_US
dc.subjectLS(3)-Equivalenceen_US
dc.subjectPoints systemsen_US
dc.subjectGenerator invariantsen_US
dc.subjectBezier curvesen_US
dc.subjectBezier surfacesen_US
dc.subjectFont designen_US
dc.titleLS (3)-equivalence conditions of control points and application to spatial Bezier curves and surfacesen_US
dc.typeArticle

Dosyalar