Examining EMF Time Series Using Prediction Algorithms With R

dc.contributor.authorPala, Zeydin
dc.date.accessioned2022-01-27T16:57:40Z
dc.date.available2022-01-27T16:57:40Z
dc.date.issued2021
dc.description.abstractIn this study, electric field strength (E) levels of high-voltage lines were measured monthly in Sutluce (38 degrees N, 41 degrees E), Mus, Turkey, between 2014 and 2018, and the obtained 60 monthly mean values were used as time series (TS) to forecast next 12 months by using conventional statistical and deep learning (DL) algorithms. In addition to the conventional statistical and DL algorithms developed for R, advanced algorithms, such as long short-term memory (LSTM) and recurrent neural network (RNN) derivative, were also used in the prediction process. We applied a cross-validation technique to the electromagnetic field (EMF) data set obtained in a period of 60 months. Thus, multiple algorithm performances were compared for the same data set. In addition, the electrical field values measured in the Sutluce neighborhood were found to exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) values.en_US
dc.description.sponsorshipMus Alparslan University RSRP UnitMus Alparslan University [BAP-18-MMF-4901-01]en_US
dc.description.sponsorshipThis work was supported by the Mus Alparslan University RSRP Unit under Project BAP-18-MMF-4901-01.en_US
dc.identifier.doi10.1109/ICJECE.2020.3037805
dc.identifier.endpage227en_US
dc.identifier.issn2694-1783
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85138753245
dc.identifier.scopusqualityQ2
dc.identifier.startpage223en_US
dc.identifier.urihttps://doi.org/10.1109/ICJECE.2020.3037805
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4382
dc.identifier.volume44en_US
dc.identifier.wosWOS:000715784900005
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorPala, Zeydin
dc.language.isoen
dc.publisherIeee Canadaen_US
dc.relation.ispartofIeee Canadian Journal of Electrical And Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learning (DL)en_US
dc.subjectelectric field strengthen_US
dc.subjectelectromagnetic fields (EMFs) measurementen_US
dc.subjecttime series (TS)en_US
dc.titleExamining EMF Time Series Using Prediction Algorithms With Ren_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4382.pdf
Boyut:
698.28 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text