Minimum and Maximum Pattern-Based Self-Organized Feature Engineering: Fibromyalgia Detection Using Electrocardiogram Signals

dc.contributor.authorCambay, Veysel Yusuf
dc.contributor.authorBaig, Abdul Hafeez
dc.contributor.authorAydemir, Emrah
dc.contributor.authorTuncer, Turker
dc.contributor.authorDogan, Sengul
dc.date.accessioned2025-03-15T14:56:51Z
dc.date.available2025-03-15T14:56:51Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractBackground: The primary objective of this research is to propose a new, simple, and effective feature extraction function and to investigate its classification ability using electrocardiogram (ECG) signals. Methods: In this research, we present a new and simple feature extraction function named the minimum and maximum pattern (MinMaxPat). In the proposed MinMaxPat, the signal is divided into overlapping blocks with a length of 16, and the indexes of the minimum and maximum values are identified. Then, using the computed indices, a feature map is calculated in base 16, and the histogram of the generated map is extracted to obtain the feature vector. The length of the generated feature vector is 256. To evaluate the classification ability of this feature extraction function, we present a new feature engineering model with three main phases: (i) feature extraction using MinMaxPat, (ii) cumulative weight-based iterative neighborhood component analysis (CWINCA)-based feature selection, and (iii) classification using a t-algorithm-based k-nearest neighbors (tkNN) classifier. Results: To obtain results, we applied the proposed MinMaxPat-based feature engineering model to a publicly available ECG fibromyalgia dataset. Using this dataset, three cases were analyzed, and the proposed MinMaxPat-based model achieved over 80% classification accuracy with both leave-one-record-out (LORO) cross-validation (CV) and 10-fold CV. Conclusions: These results clearly demonstrate that this simple model achieved high classification performance. Therefore, this model is surprisingly effective for ECG signal classification.en_US
dc.description.sponsorshipScientific Research Projects Coordination Unit of Firat University; [TEKF.24.49]en_US
dc.description.sponsorshipThis study was supported by the Scientific Research Projects Coordination Unit of Firat University. Project number TEKF.24.49.en_US
dc.identifier.doi10.3390/diagnostics14232708
dc.identifier.issn2075-4418
dc.identifier.issue23en_US
dc.identifier.orcid0000-0002-5126-6445
dc.identifier.orcidDOGAN, Sengul
dc.identifier.orcid0000-0001-9677-5684
dc.identifier.orcid0000-0002-8380-7891
dc.identifier.orcid0000-0003-3848-8008
dc.identifier.pmid39682616
dc.identifier.scopus2-s2.0-85211810079
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/diagnostics14232708
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6739
dc.identifier.volume14en_US
dc.identifier.wosWOS:001376659800001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherMDPIen_US
dc.relation.ispartofDiagnosticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250315
dc.subjectMinMaxPaten_US
dc.subjectfeature engineeringen_US
dc.subjectECG fibromyalgia detectionen_US
dc.subjectmachine learningen_US
dc.titleMinimum and Maximum Pattern-Based Self-Organized Feature Engineering: Fibromyalgia Detection Using Electrocardiogram Signalsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6739.pdf
Boyut:
3.22 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text