COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms
| dc.authorwosid | SEHRIBANOGLU, Sanem/AAJ-6148-2021 | |
| dc.authorwosid | canayaz, Murat/AGD-2513-2022 | |
| dc.contributor.author | Canayaz, Murat | |
| dc.contributor.author | Şehribanoğlu, Sanem | |
| dc.contributor.author | Özdağ, Recep | |
| dc.contributor.author | Demir, Murat | |
| dc.date.accessioned | 2022-09-04T10:27:02Z | |
| dc.date.available | 2022-09-04T10:27:02Z | |
| dc.date.issued | 2022 | |
| dc.department | Fakülteler, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümü | en_US |
| dc.department | Fakülteler, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümü | en_US |
| dc.description.abstract | Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals' valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models, SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism with high classification success for the diagnosis of COVID-19 with CT scans. | en_US |
| dc.identifier.doi | 10.1007/s00521-022-07052-4 | |
| dc.identifier.endpage | 5365 | en_US |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.issn | 1433-3058 | |
| dc.identifier.issue | 7 | en_US |
| dc.identifier.orcid | 0000-0002-3099-7599 | |
| dc.identifier.orcid | CANAYAZ, Murat | |
| dc.identifier.orcid | 0000-0001-8120-5101 | |
| dc.identifier.orcid | 0000-0001-5247-5591 | |
| dc.identifier.pmid | 35250180 | |
| dc.identifier.startpage | 5349 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/s00521-022-07052-4 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/4702 | |
| dc.identifier.volume | 34 | en_US |
| dc.identifier.wos | WOS:000762199300001 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | PubMed | |
| dc.institutionauthor | Demir, Murat | |
| dc.language.iso | en | |
| dc.publisher | Springer London Ltd | en_US |
| dc.relation.ispartof | Neural Computing & Applications | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Coronavirus; Chest computed tomography; kNN; SVM; Bayesian Optimization | en_US |
| dc.subject | Classification; Selection | en_US |
| dc.title | COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms | en_US |
| dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 4702.pdf
- Boyut:
- 1.01 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text










