COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms

dc.authorwosidSEHRIBANOGLU, Sanem/AAJ-6148-2021
dc.authorwosidcanayaz, Murat/AGD-2513-2022
dc.contributor.authorCanayaz, Murat
dc.contributor.authorŞehribanoğlu, Sanem
dc.contributor.authorÖzdağ, Recep
dc.contributor.authorDemir, Murat
dc.date.accessioned2022-09-04T10:27:02Z
dc.date.available2022-09-04T10:27:02Z
dc.date.issued2022
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractEarly diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals' valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models, SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism with high classification success for the diagnosis of COVID-19 with CT scans.en_US
dc.identifier.doi10.1007/s00521-022-07052-4
dc.identifier.endpage5365en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue7en_US
dc.identifier.orcid0000-0002-3099-7599
dc.identifier.orcidCANAYAZ, Murat
dc.identifier.orcid0000-0001-8120-5101
dc.identifier.orcid0000-0001-5247-5591
dc.identifier.pmid35250180
dc.identifier.startpage5349en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-022-07052-4
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4702
dc.identifier.volume34en_US
dc.identifier.wosWOS:000762199300001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.institutionauthorDemir, Murat
dc.language.isoen
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCoronavirus; Chest computed tomography; kNN; SVM; Bayesian Optimizationen_US
dc.subjectClassification; Selectionen_US
dc.titleCOVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithmsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4702.pdf
Boyut:
1.01 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text