Mechanical Behavior Prediction of 3D-Printed PLA/Wood Composites Using Artificial Neural Network and Fuzzy Logic

dc.contributor.authorUlkir, Osman
dc.contributor.authorAkgun, Gazi
dc.contributor.authorKaradag, Arif
dc.date.accessioned2025-03-15T14:56:55Z
dc.date.available2025-03-15T14:56:55Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThis study presents a novel approach to optimize and predict the mechanical properties of 3D-printed polylactic acid (PLA)/wood composites through artificial neural network (ANN) and fuzzy logic (FL) modeling. The research addresses the critical challenge of determining optimal process parameters in fused deposition modeling (FDM) of natural fiber composites. Using Taguchi's L27 orthogonal array, experiments were conducted with five key printing parameters: layer thickness (100-200-300 mu m), printing speed (PS) (40-60-90 mm/s), raster angle (RA) (0 degrees-45 degrees-90 degrees), infill density (ID) (30%-60%-90%), and nozzle temperature (NT) (190 degrees C-200 degrees C-210 degrees C). Analysis revealed that RA and PS were the most influential parameters, contributing 41.86% and 40.92% to tensile and compressive strengths, respectively. The developed ANN model demonstrated exceptional prediction accuracy with R2 values of 99.94% for both tensile and compressive strengths, surpassing the FL model's performance (R2 = 97.16%). The development of these models is crucial for accurately predicting mechanical behavior, allowing for efficient process optimization without extensive physical testing. Both methods demonstrated high prediction accuracy. Validation tests revealed that maximum errors of 1.95% and 2.81% for ANN and FL, respectively. The findings contribute valuable insights for the development of high-performance natural fiber composites and establish a foundation for future advanced manufacturing processes.en_US
dc.identifier.doi10.1002/pat.70103
dc.identifier.issn1042-7147
dc.identifier.issn1099-1581
dc.identifier.issue2en_US
dc.identifier.orcid0000-0002-1095-0160
dc.identifier.scopus2-s2.0-85218348667
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/pat.70103
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6786
dc.identifier.volume36en_US
dc.identifier.wosWOS:001416930400001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWileyen_US
dc.relation.ispartofPolymers For Advanced Technologiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20250315
dc.subjectadditive manufacturingen_US
dc.subjectartificial neural networken_US
dc.subjectFDMen_US
dc.subjectfuzzy logicen_US
dc.subjectPLA/wooden_US
dc.titleMechanical Behavior Prediction of 3D-Printed PLA/Wood Composites Using Artificial Neural Network and Fuzzy Logicen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6786.pdf
Boyut:
2.73 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text