Optical quantum conformable normalized and recursional model in Minkowski space
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
In this paper, we construct electromagnetic conformable timelike particles with Bishop model in Minkowski space. Also, we obtain conformable derivatives of Gamma t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma \left( {\textbf{t}}\right) $$\end{document}, Gamma m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma \left( {\textbf{m}}_{1}\right) $$\end{document}, Gamma m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma \left( {\textbf{m}}_{2}\right) $$\end{document} Lorentz forces. Then, we compute normalizing and recursion operators of magnetic vector fields according to Bishop model. Finally, we determine F-W conformable derivatives for normalizing and recursional operators.










