Predictive modeling of additively manufactured carbon fiber-PLA mechanical components via ML

dc.contributor.authorOzkul, Mahmut
dc.contributor.authorKuncan, Fatma
dc.contributor.authorUlkir, Osman
dc.date.accessioned2025-10-03T08:57:13Z
dc.date.available2025-10-03T08:57:13Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractPurpose The study aims to predict and optimize two critical parameters, surface roughness and energy consumption, in additive manufacturing (AM) processes using carbon fiber-reinforced polylactic acid (PLA) material. These parameters are essential for enhancing the efficiency and quality of AM-produced components. Design/methodology/approach A mechanical connector was fabricated using the AM process, employing the Box-Behnken experimental design method with four input parameters: layer thickness (LT) (150-200-300 mu m), infill density (ID) (40%-80%-100%), nozzle temperature (NT) (200-210-220 degrees C) and printing speed (PS) (40-80-120 mm/s). Predictive models were developed using four machine learning (ML) algorithms: Gaussian process regression (GPR), extreme gradient boosting (XGBoost), artificial neural network (ANN) and random forest regression (RFR). Model performance was evaluated using mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE) and R-squared (R-2). Additionally, ANOVA was conducted to identify the most influential parameters on surface roughness and energy consumption. Findings The RFR model demonstrated superior accuracy with low error values and high R-2 scores in estimating both surface roughness and energy consumption. ANOVA results indicated that LT (43.96%) and PS (40.01%) were the most significant factors affecting surface roughness, while LT (50.45%) and ID (27.58%) significantly influenced energy consumption. Originality/value This study underscores the effectiveness of ML algorithms and statistical analysis in modeling and optimizing AM processes. The findings provide valuable insights into improving the efficiency and quality of 3D-printed components, particularly through the integration of carbon fiber-reinforced materials and advanced predictive modeling techniques.en_US
dc.identifier.doi10.1108/MMMS-12-2024-0387
dc.identifier.issn1573-6105
dc.identifier.issn1573-6113
dc.identifier.orcid0000-0002-1095-0160
dc.identifier.scopus2-s2.0-105001710094
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1108/MMMS-12-2024-0387
dc.identifier.urihttps://hdl.handle.net/20.500.12639/7471
dc.identifier.wosWOS:001458497400001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofMultidiscipline Modeling in Materials and Structuresen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_WOS_20251003
dc.subjectAdditive manufacturingen_US
dc.subjectBox-Behnken designen_US
dc.subjectMachine learningen_US
dc.subjectPredictionen_US
dc.subjectOptimizationen_US
dc.titlePredictive modeling of additively manufactured carbon fiber-PLA mechanical components via MLen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
7471.pdf
Boyut:
726.9 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text