On the convergence of operator splitting for the Rosenau-Burgers equation

dc.contributor.authorZurnaci, Fatma
dc.contributor.authorSeydaoglu, Muaz
dc.date.accessioned2020-01-29T18:51:49Z
dc.date.available2020-01-29T18:51:49Z
dc.date.issued2019
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractWe present convergence analysis of operator splitting methods applied to the nonlinear Rosenau-Burgers equation. The equation is first splitted into an unbounded linear part and a bounded nonlinear part and then operator splitting methods of Lie-Trotter and Strang type are applied to the equation. The local error bounds are obtained by using an approach based on the differential theory of operators in Banach space and error terms of one and two-dimensional numerical quadratures via Lie commutator bounds. The global error estimates are obtained via a Lady Windermere's fan argument. Lastly, a numerical example is studied to confirm the expected convergence order.en_US
dc.identifier.doi10.1002/num.22354
dc.identifier.endpage1382en_US
dc.identifier.issn0749-159X
dc.identifier.issn1098-2426
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85061010610
dc.identifier.scopusqualityN/A
dc.identifier.startpage1363en_US
dc.identifier.urihttps://dx.doi.org/10.1002/num.22354
dc.identifier.urihttps://hdl.handle.net/20.500.12639/700
dc.identifier.volume35en_US
dc.identifier.wosWOS:000465041900004
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWILEYen_US
dc.relation.ispartofNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectconvergence analysisen_US
dc.subjectoperator splittingen_US
dc.subjectRosenau-Burgers equationen_US
dc.titleOn the convergence of operator splitting for the Rosenau-Burgers equationen_US
dc.typeArticle

Dosyalar