Benzothiophene semiconductor polymer design by machine learning with low exciton binding energy: A vast chemical space generation for new structures

dc.contributor.authorMallah, Shaimaa H.
dc.contributor.authorGuleryuz, Cihat
dc.contributor.authorSumrra, Sajjad H.
dc.contributor.authorHassan, Abrar U.
dc.contributor.authorGuleryuz, Hasan
dc.contributor.authorMohyuddin, Ayesha
dc.contributor.authorKyhoiesh, Hussein A. K.
dc.date.accessioned2025-03-15T14:56:53Z
dc.date.available2025-03-15T14:56:53Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe development of new organic semiconductors with low exciton binding energies (Eb) is crucial for improving the efficiency of organic photovoltaic (PV) devices. Here, we report the generation of a chemical space of benzothiophene (BDT)-based organic semiconductors with lowest Eb energies using machine learning (ML). Our study involves the design of over 500 organic semiconductor structures with low Eb energies and their synthetic accessibility scores. For this, we collect 1061 BDT based compounds from literature, calculated their Eb energies, and predicted them using ML with Random Forest (RF) regression, yielding the best results. Our analysis, using SHAP values, reveals that heavy atoms are the main factors in lowering Eb values. Furthermore, we tested new organic chromophore structures, which showed an efficient shift of their molecular charges. The UV-Vis spectra of these structures exhibits a redshift in the range of 358-667 nm, while their open-circuit voltage (Voc) and lightharvesting efficiency (LHE) ranges from 1.64 to 1.954 V and 52-91 %, respectively. Current study provides a valuable chemical space for the development of new organic semiconductors with improved efficiency.en_US
dc.description.sponsorshipTaif University, Saudi Arabia [TU-DSPP-2024-76]en_US
dc.description.sponsorshipFunding This research was funded by Taif University, Saudi Arabia, Project No. (TU-DSPP-2024-76) .en_US
dc.identifier.doi10.1016/j.mssp.2025.109331
dc.identifier.issn1369-8001
dc.identifier.issn1873-4081
dc.identifier.orcid0000-0003-4812-8129
dc.identifier.scopus2-s2.0-85216088475
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.mssp.2025.109331
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6766
dc.identifier.volume190en_US
dc.identifier.wosWOS:001413739900001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofMaterials Science in Semiconductor Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_WOS_20250315
dc.subjectBenzothiopheneen_US
dc.subjectExciton binding energyen_US
dc.subjectOrganic semiconductorsen_US
dc.subjectOpen circuit voltageen_US
dc.subjectRandom forest regressionen_US
dc.titleBenzothiophene semiconductor polymer design by machine learning with low exciton binding energy: A vast chemical space generation for new structuresen_US
dc.typeArticle

Dosyalar