Performance evaluation of logarithmic spiral search and selective mechanism based arithmetic optimizer for parameter extraction of different photovoltaic cell models

dc.contributor.authorEker, Erdal
dc.contributor.authorIzci, Davut
dc.contributor.authorEkinci, Serdar
dc.contributor.authorSalman, Mohammad Shukri
dc.contributor.authorRashdan, Mostafa
dc.date.accessioned2024-12-14T22:07:28Z
dc.date.available2024-12-14T22:07:28Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe imperative shift towards renewable energy sources, driven by environmental concerns and climate change, has cast a spotlight on solar energy as a clean, abundant, and cost-effective solution. To harness its potential, accurate modeling of photovoltaic (PV) systems is crucial. However, this relies on estimating elusive parameters concealed within PV models. This study addresses these challenges through innovative parameter estimation by introducing the logarithmic spiral search and selective mechanism-based arithmetic optimization algorithm (Ls-AOA). Ls-AOA is an improved version of the arithmetic optimization algorithm (AOA). It combines logarithmic search behavior and a selective mechanism to improve exploration capabilities. This makes it easier to obtain accurate parameter extraction. The RTC France solar cell is employed as a benchmark case study in order to ensure consistency and impartiality. A standardized experimental framework integrates Ls-AOA into the parameter tuning process for three PV models: single-diode, double-diode, and three-diode models. The choice of RTC France solar cell underscores its significance in the field, providing a robust evaluation platform for Ls-AOA. Statistical and convergence analyses enable rigorous assessment. Ls-AOA consistently attains low RMSE values, indicating accurate current-voltage characteristic estimation. Smooth convergence behavior reinforces its efficacy. Comparing Ls-AOA to other methods strengthens its superiority in optimizing solar PV model parameters, showing that it has the potential to improve the use of solar energy.en_US
dc.identifier.doi10.1371/journal.pone.0308110
dc.identifier.issn1932-6203
dc.identifier.issue7en_US
dc.identifier.orcid0000-0001-8359-0875
dc.identifier.orcideker, erdal
dc.identifier.orcid0000-0002-5470-8384
dc.identifier.pmid39074127
dc.identifier.scopus2-s2.0-85199868984
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0308110
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6630
dc.identifier.volume19en_US
dc.identifier.wosWOS:001282593200011
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherPublic Library Scienceen_US
dc.relation.ispartofPlos Oneen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_20241214
dc.titlePerformance evaluation of logarithmic spiral search and selective mechanism based arithmetic optimizer for parameter extraction of different photovoltaic cell modelsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6630.pdf
Boyut:
2.88 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text