Comparison of hybrid and non-hybrid models in short-term predictions on time series in the R development environment

dc.contributor.authorZeydin Pala
dc.contributor.authorIbrahim Halil Ünlük
dc.date.accessioned2025-10-03T08:52:26Z
dc.date.available2025-10-03T08:52:26Z
dc.date.issued2022
dc.departmentMuş Alparslan Üniversitesien_US
dc.description-en_US
dc.description.abstractBecause many time series usually contain both linear and nonlinear components, a single linear or nonlinear model may be insufficient for modeling and predicting time series. Therefore, estimation results are tried to be improved by using collaborative models in time series short-term prediction processes. In this study, the performances of both stand-alone models and models whose different combinations can be used in a hybrid environment are compared. The mean absolute percentage error (MAPE) metric values obtained from two different categories were evaluated. In addition, the estimation performances of three different approaches such as equi-weighted (EW), variable-weighted (VW) and cross-validation-weighted (CVW) for hybrid operation were also compared.en_US
dc.identifier.doi10.24012/dumf.1079230
dc.identifier.endpage204en_US
dc.identifier.issn1309-8640
dc.identifier.issn2146-4391
dc.identifier.issue2en_US
dc.identifier.startpage199en_US
dc.identifier.urihttps://doi.org/10.24012/dumf.1079230
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6962
dc.identifier.volume13en_US
dc.language.isoen
dc.publisherDicle Üniversitesien_US
dc.relation.ispartofDicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisien_US
dc.relation.publicationcategoryinfo:eu-repo/semantics/openAccessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_DergiPark_20251003
dc.titleComparison of hybrid and non-hybrid models in short-term predictions on time series in the R development environmenten_US
dc.typeArticle

Dosyalar