Forecasting Sunspot Time Series Using Deep Learning Methods

dc.contributor.authorPala, Z.
dc.contributor.authorAtici R.
dc.date.accessioned2020-01-29T18:53:24Z
dc.date.available2020-01-29T18:53:24Z
dc.date.issued2019
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractTo predict Solar Cycle 25, we used the values of sunspot number (SSN), which have been measured regularly from 1749 to the present. In this study, we converted the SSN dataset, which consists of SSNs between 1749 – 2018, into a time series, and made the ten-year forecast with the help of deep-learning (DL) algorithms. Our results show that algorithms such as long-short-term memory (LSTM) and neural network autoregression (NNAR), which are DL algorithms, perform better than many algorithms such as ARIMA, Naive, Seasonal Naive, Mean and Drift, which are expressed as classical algorithms in a large time-series estimation process. Using the R programming language, it was also predicted that the maximum amplitude of Solar Cycle (SC) 25 will be reached between 2022 and 2023. © 2019, Springer Nature B.V.en_US
dc.identifier.doi10.1007/s11207-019-1434-6
dc.identifier.issn0038-0938
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85065161226
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://dx.doi.org/10.1007/s11207-019-1434-6
dc.identifier.urihttps://hdl.handle.net/20.500.12639/1034
dc.identifier.volume294en_US
dc.identifier.wosWOS:000466948800005
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Netherlandsen_US
dc.relation.ispartofSolar Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSolar cycleen_US
dc.subjectStatisticsen_US
dc.subjectSunspot numberen_US
dc.titleForecasting Sunspot Time Series Using Deep Learning Methodsen_US
dc.typeArticle

Dosyalar