q-Fibonacci sequence spaces and related matrix transformations
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Institute for Ionics
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we define the sequence spaces ?p(F^ q) (1 ? p< ?) , ??(F^ q) , c(F^ q) and c(F^ q) by using q-Fibonacci band matrix F^ q defined by F^q=F^nk(q)={-Fn+1(q)-1qnFn(q),k=n-1Fn+2(q)-1qnFn(q),k=n0,otherwise(k,n?N).We study some topological properties and give some inclusion relations for these spaces. In addition, we build a bases for the space ?p(F^ q) , compute ?-, ?-, ?- duals of the same space, characterize some matrix classes and examine some geometric properties. © 2022, The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied Mathematics.
Açıklama
Anahtar Kelimeler
Banach-saks property, Band matrix, Dual spaces, Matrix transform, q-Fibonacci numbers, Linear transformations, Matrix algebra, Number theory, Banach-saks property, Band matrix, Dual spaces, Fibonacci numbers, Fibonacci sequences, Matrix transforms, Property, Q-fibonacci number, Related matrices, Sequence space, Topology
Kaynak
Journal of Applied Mathematics and Computing










