An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator

dc.authorscopusid57186395300
dc.authorscopusid57201318149
dc.authorscopusid57211714693
dc.authorscopusid57190984712
dc.authorwosidİzci, Davut/T-6000-2019
dc.contributor.authorEkinci, Serdar
dc.contributor.authorİzci, Davut
dc.contributor.authorEker, Erdal
dc.contributor.authorAbualigah, Laith
dc.date.accessioned2022-09-04T10:27:12Z
dc.date.available2022-09-04T10:27:12Z
dc.date.issued2022
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.description.abstractThis paper presents a new metaheuristic algorithm by enhancing one of the recently proposed optimizers named Aquila optimizer (AO). The enhanced AO (enAO) algorithm is constructed by employing a novel modified opposition-based learning (OBL) mechanism and Nelder-Mead (NM) simplex search method. The novel modified OBL aids the AO in further diversification while the NM method increases the intensification. The enAO algorithm is first demonstrated to have more extraordinary ability than the original AO algorithm by employing challenging benchmark functions from the CEC 2019 test suite. The constructed enAO algorithm is proposed to design a PID plus second-order derivative (PIDD2) controller used in an automatic voltage regulator (AVR) system. To reach better efficiency, a novel objective function is also proposed in this paper. Initially, the proposed enAO-PIDD2 approach is demonstrated to be superior in terms of transient and frequency responses along with robustness and disturbance rejection compared to other available and best performing PID, fractional order PID (FOPID), PID acceleration (PIDA), and PIDD2 controllers tuned with different practical algorithms. Moreover, the superior performance of the proposed approach is also demonstrated comparatively using other available techniques for the AVR system reported in the last six years.en_US
dc.identifier.doi10.1007/s10462-022-10216-2
dc.identifier.issn0269-2821
dc.identifier.issn1573-7462
dc.identifier.orcid0000-0001-8359-0875
dc.identifier.orcidEkinci, Serdar
dc.identifier.orcid0000-0002-7673-2553
dc.identifier.scopus2-s2.0-85131697358
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s10462-022-10216-2
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4755
dc.identifier.wosWOS:000809291300001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorEker, Erdal
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofArtificial Intelligence Reviewen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnhanced Aquila optimizer; Opposition-based learning; Nelder-Mead simplex search method; Automatic voltage regulator; Controller designen_US
dc.subjectSymbiotic Organisms Search; Pid Controller; Performance Analysis; Efficient Design; Simplex-Method; Avr System; Algorithm; Parametersen_US
dc.titleAn effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulatoren_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4755.pdf
Boyut:
2.93 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text