Prediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning model

dc.contributor.authorAkgun, Gazi
dc.contributor.authorUlkir, Osman
dc.date.accessioned2024-12-14T22:07:27Z
dc.date.available2024-12-14T22:07:27Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe final product of additive manufacturing (AM) or 3D printing critically depends on the surface quality. An experimental study on the 3D printed intake manifold flange using acrylonitrile butadiene styrene (ABS) material was executed by varying the four process parameters. A fused deposition modeling (FDM) based 3D printer was used to fabricate the flanges. The association between the parameters and the surface roughness of printed ABS flanges was investigated. A feed forward neural network (FFNN) model trained on particle swarm optimization (PSO) optimized with a genetic algorithm (GA) was used to estimate the surface roughness. A Box-Behnken design (BBD) with printing parameters at three levels was used, and 25 parts were fabricated. The suggested model demonstrated a coefficient of determination (R2) of 0.9865 on test values, mean of root-mean-square-error (RMSE) of 0.1231 after 500 times training for generalization. And also mean of overfitting factor is 0.7110. This means that the suggested system could generalize. Comparing the results from the suggested model and ANN, the suggested hybrid model outperformed ANN in predicting the surface roughness values with no overfitting. This suggests that GA optimized PSO based FFNN may be a more suitable method for estimating product quality in terms of surface roughness.en_US
dc.identifier.doi10.1177/08927057241243364
dc.identifier.endpage2245en_US
dc.identifier.issn0892-7057
dc.identifier.issn1530-7980
dc.identifier.issue7en_US
dc.identifier.orcid0000-0002-8154-5883
dc.identifier.orcidUlkir, Osman
dc.identifier.orcid0000-0002-1095-0160
dc.identifier.scopus2-s2.0-85189778555
dc.identifier.scopusqualityQ1
dc.identifier.startpage2225en_US
dc.identifier.urihttps://doi.org/10.1177/08927057241243364
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6614
dc.identifier.volume37en_US
dc.identifier.wosWOS:001195428400001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSage Publications Ltden_US
dc.relation.ispartofJournal of Thermoplastic Composite Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241214
dc.subjectAdditive manufacturingen_US
dc.subjectsurface roughnessen_US
dc.subjectfused deposition modelingen_US
dc.subjectparticle swarm optimization learningen_US
dc.subjectartificial neural networken_US
dc.subjectgenetic algorithm optimizationen_US
dc.titlePrediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning modelen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6614.pdf
Boyut:
1.46 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text