Farklı Derin Sinir Ağı Modellerinin Duygu Tanımadaki Performanslarının Karşılaştırılması

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Muş Alparslan Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Teknolojinin geliştirilmesi ile insan ve makine etkileşimi her geçen gün artmaktadır. Bilim insanları bu etkileşim nedeniyle oluşan iletişimin dolayısıyla bilgi alışverişinin güçlendirilmesini amaçlamaktadırlar. Son yıllarda güçlendirme için insan sesinin ve yüz ifadelerinin analiz edilerek insan duygularının otomatik olarak tanınmasını sağlayan çalışmaların sayısında artış yaşanmaktadır. Ses sinyalinde duygu tanıma özelikle, görsel bilginin kısıtlı ya da hiç olmadığı durumlarda oldukça önemlidir. Bu çalışmada da insan sesinin analiz edilerek duyguların otomatik olarak tanımlanması üzerine kayda alınmış RAVDESS (The Ryerson Audio-Visual Database of Emotional Speech and Song) ve TESS (Toronto Emotional Speech Set) ses kayıtları veri seti olarak kullanılmış, makine öğrenmesi sınıflandırıcıları ve derin öğrenme algoritmaları kullanılarak modellerin iyi tahminler üretip üretmediğine bakılmış, algoritmalar ve yöntemler kıyaslanmıştır. Bunların yanı sıra Alexnet, Resnet50 ve SqueezeNet ağları da kıyaslamaya dahil edilmiştir. RAVDESS ve TESS veri setleriyle Alexnet ağında Karar Ağacı %44, SVM %29 isabetli sonuç elde edilirken, RAVDESS veri setine TESS eklendiğinde sonuçlar %64 ve %55 isabet oranına yükselmiştir. Ağlar arasında en iyi sonuç Squeezenet’le 100 adımdan henüz 70 adım gerçekleştiğinde tam başarım elde edilirken en kötü sonuç MobileNet’te %15 isabette kalmıştır. Evrişimsel sinir ağı derin öğrenme algoritmalarının bütün ağlarda %15-17 civarı isabetli sonuçlar verdiği gözlemlenmiştir.

Açıklama

maummfd

Anahtar Kelimeler

derin öğrenme, MobileNet, SqueezeNet, Evrişimsel Sinir Ağı, Duygu Tanıma

Kaynak

Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

2

Sayı

1

Künye

Onay

İnceleme

Ekleyen

Referans Veren