Weighted statistical rough convergence in normed spaces

dc.contributor.authorBayram, Erdal
dc.contributor.authorAydin, Abdullah
dc.contributor.authorKucukaslan, Mehmet
dc.date.accessioned2024-12-14T22:07:44Z
dc.date.available2024-12-14T22:07:44Z
dc.date.issued2024
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractStatistical convergence is a significant generalisation of the traditional convergence of real or complex valued sequences. Over the years, it has been studied by many authors and found many applications in various problems. In this paper we introduce a new concept about statistical rough convergence for sequences in normed spaces by using weighted density, which is a generalisation of the natural density. We investigate the fundamental properties of g-statistical rough convergence and statistical rough limit points including closeness, convexity and boundedness. We also establish a relationship between statistical rough limit points and g-statistical boundedness. The obtained results provide a new framework for studying statistical rough convergence.en_US
dc.identifier.endpage192en_US
dc.identifier.issn1905-7873
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85200336385
dc.identifier.scopusqualityQ3
dc.identifier.startpage178en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6730
dc.identifier.volume18en_US
dc.identifier.wosWOS:001272833700001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMaejo Univen_US
dc.relation.ispartofMaejo International Journal of Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241214
dc.subjectstatistical rough convergenceen_US
dc.subjectg-weight densityen_US
dc.subjectlimit pointsen_US
dc.subjectnormed spacesen_US
dc.titleWeighted statistical rough convergence in normed spacesen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6729.pdf
Boyut:
464.85 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text