Copula-Based Data Augmentation and Machine Learning for Predicting Tensile Strength of 3D-Printed PLA Under Anisotropic Conditions

dc.contributor.authorSaylik, Ahmet
dc.contributor.authorKosedag, Ertan
dc.contributor.authorEtem, Taha
dc.date.accessioned2025-10-03T08:57:24Z
dc.date.available2025-10-03T08:57:24Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractIn this study, 48 polylactic acid (PLA) samples were produced via 3D printing, incorporating four infill geometries (gyroid, lattice, honeycomb, and linear), four infill rates (15%-60%), and three printing directions (x, y, z). Tensile testing revealed anisotropic mechanical behavior, with the x-direction consistently outperforming y- and z-directions due to layer adhesion dynamics. A machine learning framework leveraging copula-based data augmentation was developed to predict tensile strength at untested infill rates. The framework employed least squares regression, support vector machines (SVM), Gaussian process regression (GPR), and artificial neural networks (ANNs), augmented with 20,000 synthetic data points to enhance model robustness. Results demonstrated that gyroid geometry in the x-direction achieved the highest tensile strength (53.4 MPa at 60% infill), while Lattice patterns underperformed. Data augmentation improved prediction accuracy across all models, with SVM achieving the lowest RMSE (1.53 MPa) and R 2 values exceeding 0.87. This study highlights the critical interplay of infill parameters, directional anisotropy, and machine learning in optimizing 3D-printed PLA components for industrial applications, offering a data-driven pathway to reduce experimental costs and accelerate material design.en_US
dc.identifier.doi10.1002/app.57533
dc.identifier.issn0021-8995
dc.identifier.issn1097-4628
dc.identifier.orcid0000-0003-1801-0082
dc.identifier.orcidKOSEDAG, ERTAN
dc.identifier.orcid0000-0002-5580-0414
dc.identifier.scopus2-s2.0-105009527346
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/app.57533
dc.identifier.urihttps://hdl.handle.net/20.500.12639/7557
dc.identifier.wosWOS:001551807500001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWileyen_US
dc.relation.ispartofJournal of Applied Polymer Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_WOS_20251003
dc.subjectapplicationsen_US
dc.subjectmanufacturingen_US
dc.subjectmechanical propertiesen_US
dc.subjectthermoplasticsen_US
dc.titleCopula-Based Data Augmentation and Machine Learning for Predicting Tensile Strength of 3D-Printed PLA Under Anisotropic Conditionsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
7557.pdf
Boyut:
3.14 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text