Enhanced railway monitoring and segmentation using DNet and mathematical methods

dc.contributor.authorSevi, Mehmet
dc.contributor.authorAydin, Ilhan
dc.date.accessioned2025-03-15T14:56:54Z
dc.date.available2025-03-15T14:56:54Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThis study explores enhancing security and automation in railway transportation by evaluating the BiSeNetV2, YOLO, and DNet models for railway monitoring and segmentation. Tests were conducted in the Gazebo simulation environment and the field using the Anafi4K UAV, comparing the effectiveness of different algorithms. Additionally, the role of mathematical methods, such as Bezier curves and Bernstein polynomials, in supporting the autonomous flight capabilities of UAVs was examined. These methods have proven effective in helping UAVs follow railway lines by increasing maneuverability, contributing to successful flights. The combination of the BiSeNetV2 model, YOLO models, and these mathematical methods offers a robust solution for railway monitoring and segmentation. Future advancements and broader adoption of these technologies in industrial applications could enhance the safety and efficiency of rail transport. Furthermore, the developed DNet model demonstrated a 99% accuracy rate in segmenting foreign objects around railway lines, proving to be a significant alternative among deep learning models for railway monitoring and segmentation. The model's performance highlights its potential to provide crucial solutions for security and automation in railway transportation.en_US
dc.description.sponsorshipScientific Research Projects Coordination Unit of Fimath;rat University; [ADEP.22.02]en_US
dc.description.sponsorshipThis work was supported by the Scientific Research Projects Coordination Unit of F & imath;rat University. Project number ADEP.22.02.en_US
dc.identifier.doi10.1007/s11760-024-03723-y
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.issue1en_US
dc.identifier.orcid0000-0001-6880-4935
dc.identifier.orcidSevi, Mehmet
dc.identifier.orcid0000-0001-6952-8880
dc.identifier.scopus2-s2.0-85211383020
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s11760-024-03723-y
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6778
dc.identifier.volume19en_US
dc.identifier.wosWOS:001372894900009
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltden_US
dc.relation.ispartofSignal Image and Video Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_WOS_20250315
dc.subjectSegmentationen_US
dc.subjectGazebo simulationen_US
dc.subjectBernstein polynomialsen_US
dc.subjectDeep learningen_US
dc.subjectRailway monitoringen_US
dc.titleEnhanced railway monitoring and segmentation using DNet and mathematical methodsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6778.pdf
Boyut:
2.52 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text