Development of Sol-Gel Synthesized ZnO Nanoparticle-Incorporated Polymer-Based X-Ray Detectors: A Comparative Investigation of Device Architectures

dc.contributor.authorSelçuk, Nevin Nur
dc.contributor.authorÖztürk, S.
dc.contributor.authorKalkan, Yalçın
dc.contributor.authorDemir, Ahmet
dc.contributor.authorGegi̇n, Keziban
dc.contributor.authorKösemen, Arif
dc.date.accessioned2025-10-03T08:55:50Z
dc.date.available2025-10-03T08:55:50Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractThe extensive use of X-rays in medical, security, and industrial applications has led to considerable interest in the development of advanced X-ray detection technologies. Conventional detectors based on inorganic semiconductors, such as silicon or germanium, face challenges, including high production costs and limited flexibility. This study investigates the potential of organic semiconductors, particularly ZnO nanoparticles (ZnO NPs) incorporated into a poly(3-hexylthiophene) (P3HT) matrix, for X-ray detection. The ZnO NPs, selected for their high mobility, large band gap, and thermal stability, were synthesized via a sol-gel method and integrated into P3HT to form composite layers at varying ratios (1:0.25, 1:0.5, and 1:0.75). Two different device architectures were fabricated: interdigitated (IDT) electrodes as resistive-based and diode-based devices with ITO/ZnO/P3HT/Graphite configurations. The influence of the ZnO NP concentration and device structure on X-ray detection performance was systematically investigated and evaluated. The results indicated that increasing the ZnO NP content enhanced electron transportation and improved the X-ray sensitivity of the devices. The ITO/ZnO/P3HT/Graphite device with a P3HT ratio of 1:0.75 exhibited the highest sensitivity (0.94 μGy/s) and the fastest response times, outperforming those of the IDT-based devices. This study demonstrates that organic semiconductors doped with ZnO NPs are promising candidates for cost-effective, flexible, and high-performance X-ray detectors. © 2025 Elsevier B.V., All rights reserved.en_US
dc.identifier.doi10.1021/acsaelm.4c01636
dc.identifier.endpage1735en_US
dc.identifier.issn2637-6113
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-86000431455
dc.identifier.scopusqualityQ1
dc.identifier.startpage1723en_US
dc.identifier.urihttps://doi.org/10.1021/acsaelm.4c01636
dc.identifier.urihttps://hdl.handle.net/20.500.12639/7348
dc.identifier.volume7en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofACS Applied Electronic Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_Scopus_20251003
dc.subjectOrganic Semiconductoren_US
dc.subjectOrganic X-ray Detectoren_US
dc.subjectP3ht:znoen_US
dc.subjectX-ray Detectionen_US
dc.subjectZno Nanoparticlesen_US
dc.subjectHeterojunctionsen_US
dc.subjectLayered Semiconductorsen_US
dc.subjectParticle Detectorsen_US
dc.subjectRadiometersen_US
dc.subjectRemote Sensingen_US
dc.subjectSilicon Detectorsen_US
dc.subjectWide Band Gap Semiconductorsen_US
dc.subjectX Ray Detectorsen_US
dc.subjectZno Nanoparticlesen_US
dc.subjectOrganic X-ray Detectoren_US
dc.subjectOrganicsen_US
dc.subjectPoly (3-hexylthiophene)en_US
dc.subjectPoly(3-hexylthiophene):znoen_US
dc.subjectSynthesiseden_US
dc.subjectX-ray Detectionsen_US
dc.subjectX-ray Detectoren_US
dc.subjectZnoen_US
dc.subjectSol-gel Processen_US
dc.titleDevelopment of Sol-Gel Synthesized ZnO Nanoparticle-Incorporated Polymer-Based X-Ray Detectors: A Comparative Investigation of Device Architecturesen_US
dc.typeArticle

Dosyalar