Comparison of Swarm-based Metaheuristic and Gradient Descent-based Algorithms in Artif icial Neural Network Training

dc.authorwosidEkinci, Serdar/AAA-7422-2019
dc.authorwosidIzci, Davut/T-6000-2019
dc.contributor.authorEker, Erdal
dc.contributor.authorKayri, Murat
dc.contributor.authorEkinci, Serdar
dc.contributor.authorIzci, Davut
dc.date.accessioned2023-11-10T21:10:01Z
dc.date.available2023-11-10T21:10:01Z
dc.date.issued2023
dc.departmentMAÜNen_US
dc.description.abstractThis paper aims to compare the gradient descent-based algorithms under classical training model and swarm-based metaheuristic algorithms in feed forward backpropagation artificial neural network training. Batch weight and bias rule, Bayesian regularization, cyclical weight and bias rule and Levenberg-Marquardt algorithms are used as the classical gradient descentbased algorithms. In terms of the swarm-based metaheuristic algorithms, hunger games search, gray wolf optimizer, Archimedes optimization, and the Aquila optimizer are adopted. The Iris data set is used in this paper for the training. Mean square error, mean absolute error and determination coefficient are used as statistical measurement techniques to determine the effect of the network architecture and the adopted training algorithm. The metaheuristic algorithms are shown to have superior capability over the gradient descent-based algorithms in terms of artificial neural network training. In addition to their success in error rates, the classification capabilities of the metaheuristic algorithms are also observed to be in the range of 94%-97%. The hunger games search algorithm is also observed for its specific advantages amongst the metaheuristic algorithms as it maintains good performance in terms of classification ability and other statistical measurements.en_US
dc.identifier.doi10.14201/adcaij.29969
dc.identifier.issn2255-2863
dc.identifier.issue1en_US
dc.identifier.orcid0000-0002-7673-2553
dc.identifier.orcidIzci, Davut
dc.identifier.orcid0000-0001-8359-0875
dc.identifier.scopus2-s2.0-85174840520
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.14201/adcaij.29969
dc.identifier.urihttps://hdl.handle.net/20.500.12639/5384
dc.identifier.volume12en_US
dc.identifier.wosWOS:001072782200001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherEdiciones Univ Salamancaen_US
dc.relation.ispartofAdcaij-Advances in Distributed Computing and Artificial Intelligence Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectSwarm-Based Metaheuristic Algorithmsen_US
dc.subjectGradient Descent-Based Algorithmen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectPerformanceen_US
dc.titleComparison of Swarm-based Metaheuristic and Gradient Descent-based Algorithms in Artif icial Neural Network Trainingen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
5384.pdf
Boyut:
728.68 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text