Combining Classifiers for Protein Secondary Structure Prediction

dc.contributor.authorAydin Z.
dc.contributor.authorUzut, ÖMMU GÜLSÜM
dc.date.accessioned2020-01-29T18:54:53Z
dc.date.available2020-01-29T18:54:53Z
dc.date.issued2018
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description9th International Conference on Computational Intelligence and Communication Networks, CICN 2017 -- 16 September 2017 through 17 September 2017 -- -- 135332en_US
dc.description.abstractProtein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners. © 2017 IEEE.en_US
dc.description.sponsorshipACKNOWLEDGEMENT All computations were performed on TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). This work is supported by grant 113E550 from 3501 TUBITAK National Young Researchers Career Award.en_US
dc.identifier.doi10.1109/CICN.2017.8319350
dc.identifier.endpage33en_US
dc.identifier.isbn9781509050017
dc.identifier.scopus2-s2.0-85050877368
dc.identifier.scopusqualityN/A
dc.identifier.startpage29en_US
dc.identifier.urihttps://dx.doi.org/10.1109/CICN.2017.8319350
dc.identifier.urihttps://hdl.handle.net/20.500.12639/1571
dc.identifier.volume2018-Januaryen_US
dc.identifier.wosWOS:000432249700007
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 9th International Conference on Computational Intelligence and Communication Networks, CICN 2017en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbioinformaticsen_US
dc.subjectdeep learningen_US
dc.subjectensemble methodsen_US
dc.subjecthybrid classifiersen_US
dc.subjectprotein secondary structure predictionen_US
dc.titleCombining Classifiers for Protein Secondary Structure Predictionen_US
dc.typeConference Object

Dosyalar