Approximation by faber-laurent rational functions in variable exponent morrey spaces

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER HEIDELBERG

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Abstract Let G be a finite Jordan domain bounded by a Dini-smooth curve Gamma in the complex plane C. In this work, approximation properties of the Faber-Laurent rational series expansions in variable exponent Morrey spaces L-p(center dot),L-lambda(center dot)(Gamma) are studied. Also, direct theorems of approximation theory in variable exponent Morrey-Smirnov classes, defined in domains with a Dini-smooth boundary, are proved.

Açıklama

Anahtar Kelimeler

Faber-Laurent rational functions, Conformal mapping, Dini-smooth curve, Variable exponent Morrey spaces, Modulus of smoothness

Kaynak

COMPUTATIONAL METHODS AND FUNCTION THEORY

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Onay

İnceleme

Ekleyen

Referans Veren