Approximation by faber-laurent rational functions in variable exponent morrey spaces
Yükleniyor...
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER HEIDELBERG
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Abstract Let G be a finite Jordan domain bounded by a Dini-smooth curve Gamma in the complex plane C. In this work, approximation properties of the Faber-Laurent rational series expansions in variable exponent Morrey spaces L-p(center dot),L-lambda(center dot)(Gamma) are studied. Also, direct theorems of approximation theory in variable exponent Morrey-Smirnov classes, defined in domains with a Dini-smooth boundary, are proved.
Açıklama
Anahtar Kelimeler
Faber-Laurent rational functions, Conformal mapping, Dini-smooth curve, Variable exponent Morrey spaces, Modulus of smoothness
Kaynak
COMPUTATIONAL METHODS AND FUNCTION THEORY










