Energy efficiency in building: Entropy-based Grey Wolf Optimization for improved MLP performance

dc.contributor.authorTuğal, İhsan
dc.date.accessioned2025-10-03T08:55:49Z
dc.date.available2025-10-03T08:55:49Z
dc.date.issued2025
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractEnergy efficiency in building HVAC systems is essential for sustainable development, requiring accurate predictions of heating and cooling loads. Traditional hyperparameter tuning methods often lead to suboptimal performance in artificial neural network models due to local optima and premature convergence issues. This study proposes an Entropy-Based Grey Wolf Optimization to enhance the hyperparameter tuning of Multi-Layer Perceptron models for improved load prediction. Unlike traditional Grey Wolf Optimization, which relies on a fixed linear decay for search balancing, the Entropy-Based Grey Wolf Optimization dynamically adjusts the search strategy based on entropy levels. This prevents premature convergence, enhances global search capabilities, and improves fine-tuning of Multi-Layer Perceptron hyperparameters for HVAC load prediction. The proposed optimization approach is compared with ten different optimization techniques, and results indicate that Entropy-Based Grey Wolf Optimization achieves superior accuracy with lower mean squared error and faster convergence. The study contributes to both the improvement of energy efficiency in HVAC systems and the development of a generalizable entropy-based optimization framework that can be applied to various machine learning tasks. © 2025 Elsevier B.V., All rights reserved.en_US
dc.identifier.doi10.1016/j.egyr.2025.03.048
dc.identifier.endpage4260en_US
dc.identifier.issn2352-4847
dc.identifier.scopus2-s2.0-105001931341
dc.identifier.scopusqualityQ1
dc.identifier.startpage4247en_US
dc.identifier.urihttps://doi.org/10.1016/j.egyr.2025.03.048
dc.identifier.urihttps://hdl.handle.net/20.500.12639/7341
dc.identifier.volume13en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScopus
dc.institutionauthorTuğal, İhsan
dc.language.isoen
dc.publisherElsevier Ltden_US
dc.relation.ispartofEnergy Reportsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_Scopus_20251003
dc.subjectBuilding Hvac Systemsen_US
dc.subjectEnergy Efficiencyen_US
dc.subjectEntropyen_US
dc.subjectHyperparameter Optimizationen_US
dc.subjectMeta-heuristic Algorithmsen_US
dc.subjectMulti-layer Perceptronen_US
dc.subjectHvacen_US
dc.subjectBuilding Hvac Systemen_US
dc.subjectEnergyen_US
dc.subjectEntropy-baseden_US
dc.subjectGray Wolvesen_US
dc.subjectHvac Systemen_US
dc.subjectHyper-parameteren_US
dc.subjectHyper-parameter Optimizationsen_US
dc.subjectMeta-heuristics Algorithmsen_US
dc.subjectMultilayers Perceptronsen_US
dc.subjectOptimisationsen_US
dc.titleEnergy efficiency in building: Entropy-based Grey Wolf Optimization for improved MLP performanceen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
7341.pdf
Boyut:
4.19 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text