Unbounded p-Convergence in Lattice-Normed Vector Lattices
| dc.contributor.author | Aydın A. | |
| dc.contributor.author | Emelyanov E. | |
| dc.contributor.author | Erkurşun-Özcan N. | |
| dc.contributor.author | Marabeh M. | |
| dc.date.accessioned | 2020-01-29T18:53:48Z | |
| dc.date.available | 2020-01-29T18:53:48Z | |
| dc.date.issued | 2019 | |
| dc.department | MAUN | en_US |
| dc.description.abstract | A net x? in a lattice-normed vector lattice (X, p, E) is unbounded p-convergent to x ? X if p(| x?? x| ? u) ? o 0 for every u ? X+. This convergence has been investigated recently for (X, p, E) = (X, |·|, X) under the name of uo-convergence, for (X, p, E) = (X, ?·?, ?) under the name of un-convergence, and also for (X, p, ?X ?) , where p(x)[f]:= |f|(|x|), under the name uaw-convergence. In this paper we study general properties of the unbounded p-convergence. © 2019, Allerton Press, Inc. | en_US |
| dc.identifier.doi | 10.3103/S1055134419030027 | |
| dc.identifier.endpage | 182 | en_US |
| dc.identifier.issn | 1055-1344 | |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.scopus | 2-s2.0-85071622536 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 164 | en_US |
| dc.identifier.uri | https://dx.doi.org/10.3103/S1055134419030027 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/1244 | |
| dc.identifier.volume | 29 | en_US |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Pleiades Publishing | en_US |
| dc.relation.ispartof | Siberian Advances in Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | lattice-normed vector lattice | en_US |
| dc.subject | mixed-normed space | en_US |
| dc.subject | un-convergence | en_US |
| dc.subject | uo-convergence | en_US |
| dc.subject | vector lattice | en_US |
| dc.title | Unbounded p-Convergence in Lattice-Normed Vector Lattices | en_US |
| dc.type | Article |










