Approximation of the Functions in Weighted Lebesgue Spaces With Variable Exponent

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor and Francis Ltd.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the present work, we investigate the approximation problems of the functions by Fejér, and Zygmund means of Fourier trigonometric series in weighted Lebesgue spaces with variable exponents and of the functions by Fejér and Abel–Poisson sums of Faber series in weighted Smirnov classes with variable exponents defined on simply connected domains with a Dini-smooth boundary of the complex plane. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group.

Açıklama

Anahtar Kelimeler

30E10, 41A10, 41A25, 46E30, Abel–Poisson mean, best approximation, Lebesgue space with a variable exponent, Muckenhoupt weight, weighted modulus of smoothness, Zygmund mean

Kaynak

Complex Variables and Elliptic Equations

WoS Q Değeri

Scopus Q Değeri

Cilt

63

Sayı

10

Künye

Onay

İnceleme

Ekleyen

Referans Veren