Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models

dc.authorscopusid57576344400
dc.authorscopusid14029389000
dc.authorscopusid8668024500
dc.authorscopusid57575493800
dc.authorscopusid25932029800
dc.authorwosidErdem Büyükkiraz, Mine/ABG-3541-2020
dc.authorwosidErdem Büyükkiraz, Mine/ABC-1093-2021
dc.contributor.authorSöylemez, Ümmü Gülsüm
dc.contributor.authorYousef, Malik
dc.contributor.authorKesmen, Zülal
dc.contributor.authorBüyükkiraz, Mine Erdem
dc.contributor.authorBakir-Güngör, Burcu
dc.date.accessioned2022-09-04T10:26:55Z
dc.date.available2022-09-04T10:26:55Z
dc.date.issued2022
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Kimya Bölümüen_US
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Kimya Bölümüen_US
dc.description.abstractAntimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies.en_US
dc.description.sponsorshipZefat Academic College; Abdullah Gul University Support Foundation (AGUV); TUBITAK 1001 program [120Z565]en_US
dc.description.sponsorshipThe work of M.Y. has been supported by the Zefat Academic College. The work of B.B.-G. has been supported by the Abdullah Gul University Support Foundation (AGUV). The works of Z.K. and M.E.B. have been supported by the TUBITAK 1001 program (Project No: 120Z565) to support scientific and technological research projects.en_US
dc.identifier.doi10.3390/app12073631
dc.identifier.issn2076-3417
dc.identifier.issue7en_US
dc.identifier.orcid0000-0002-8724-0466
dc.identifier.orcidBakir-G�ng�r, Burcu
dc.identifier.orcid0000-0002-2272-6270
dc.identifier.orcid0000-0002-6602-772X
dc.identifier.orcid0000-0001-8780-6303
dc.identifier.orcid0000-0002-4505-6871
dc.identifier.scopus2-s2.0-85128212459
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/app12073631
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4653
dc.identifier.volume12en_US
dc.identifier.wosWOS:000781591500001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorSöylemez, Ümmü Gülsüm
dc.language.isoen
dc.publisherMdpien_US
dc.relation.ispartofApplied Sciences-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectantimicrobial peptide (AMP); machine learning; classification model; antimicrobial peptide prediction; antimicrobial activity; physico-chemical properties; linear cationic antimicrobial peptidesen_US
dc.subjectDesign; Discovery; Protein; Classifier; Algorithms; Defensin; Systems; Toolen_US
dc.titlePrediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Modelsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4653.pdf
Boyut:
3.51 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text