Performance Evaluation of PDO Algorithm through Benchmark Functions and MLP Training

dc.contributor.authorEker, Erdal
dc.contributor.authorKayri, Murat
dc.contributor.authorEkinci, Serdar
dc.contributor.authorKacmaz, Mehmet Ali
dc.date.accessioned2024-12-14T22:07:39Z
dc.date.available2024-12-14T22:07:39Z
dc.date.issued2023
dc.departmentMuş Alparslan Üniversitesien_US
dc.description.abstractMetaheuristic algorithms have become very common in the last two decades. The flexibility and ability to overcome obstacles in solving global problems have increased the use of metaheuristic algorithms. In the training of multilayer perceptron (MLP), metaheuristic algorithms have been preferred for many years due to their good classification capabilities and low error values. Therefore, this study evaluates the performance of the Prairie dog optimization (PDO) algorithm for MLP training. In this context, there are two main focuses in this study. The first one is to test the performance of the PDO algorithm through test functions and to compare it with different metaheuristic algorithms for demonstration of its superiority, and the second is to train MLP using the IRIS dataset with the PDO algorithm. As the PDO is one of the most recent metaheuristic algorithms, the lack of any study on this subject is the motivation for the article. PDO algorithm can be used in real-world problems as a powerful optimizer, as it reaches the minimum point in functions, and can also be used as a classification algorithm because it has successfully performed in MLP training.en_US
dc.identifier.doi10.5152/electr.2023.22179
dc.identifier.endpage606en_US
dc.identifier.issn2619-9831
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85175005572
dc.identifier.scopusqualityQ3
dc.identifier.startpage597en_US
dc.identifier.trdizinid1264858
dc.identifier.urihttps://doi.org/10.5152/electr.2023.22179
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1264858
dc.identifier.urihttps://hdl.handle.net/20.500.12639/6704
dc.identifier.volume23en_US
dc.identifier.wosWOS:001093363400017
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.publisherAvesen_US
dc.relation.ispartofElectricaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_20241214
dc.subjectClassificationen_US
dc.subjectmetaheuristicsen_US
dc.subjectmultilayer perceptronen_US
dc.subjectprairie dog optimizationen_US
dc.titlePerformance Evaluation of PDO Algorithm through Benchmark Functions and MLP Trainingen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
6704-2.pdf
Boyut:
5.68 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text