Personality traits prediction model from Turkish contents with semantic structures

dc.authorwosidKOŞAN, Muhammed Ali/X-2575-2019
dc.contributor.authorKosan, Muhammed Ali
dc.contributor.authorKaracan, Hacer
dc.contributor.authorUrgen, Burcu A.
dc.date.accessioned2023-11-10T21:09:50Z
dc.date.available2023-11-10T21:09:50Z
dc.date.issued2023
dc.departmentMAÜNen_US
dc.description.abstractUsers' personality traits can provide different clues about them in the Internet environment. Some areas where these clues can be used are law enforcement, advertising agencies, recruitment processes, and e-commerce applications. In this study, it is aimed to create a dataset and a prediction model for predicting the personality traits of Internet users who produce Turkish content. The main contribution of the study is the personality traits dataset composed of the Turkish Twitter content. In addition, the preprocessing, vectorization, and deep learning model comparisons made in the proposed prediction system will contribute to both current usages and future studies in the relevant literature. It has been observed that the success of the Bidirectional Encoder Representations from Transformers vectorization method and the Stemming preprocessing step on the Turkish personality traits dataset is high. In the previous studies, the effects of these processes on English datasets were reported to have lower success rates. In addition, the results show that the Bidirectional Long Short-Term Memory deep learning method has a better level of success than other methods both for the Turkish dataset and English datasets.en_US
dc.identifier.doi10.1007/s00521-023-08603-z
dc.identifier.endpage17165en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue23en_US
dc.identifier.orcid0000-0002-1422-6006
dc.identifier.scopus2-s2.0-85153753021
dc.identifier.scopusqualityQ1
dc.identifier.startpage17147en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-023-08603-z
dc.identifier.urihttps://hdl.handle.net/20.500.12639/5285
dc.identifier.volume35en_US
dc.identifier.wosWOS:000978071400002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTurkish Twitter Contenten_US
dc.subjectPersonality Prediction Modelen_US
dc.subjectPersonality Dataseten_US
dc.subjectPreprocessingen_US
dc.subjectSocial Mediaen_US
dc.subjectBig-5 Personalityen_US
dc.subjectWeibo Texten_US
dc.subjectClassificationen_US
dc.subjectUseren_US
dc.subjectLstmen_US
dc.subjectRecognitionen_US
dc.subjectInventoryen_US
dc.subjectFeaturesen_US
dc.titlePersonality traits prediction model from Turkish contents with semantic structuresen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
5285.pdf
Boyut:
4.92 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text