A Deep Learning-Based Hybrid Approach to Detect Fastener Defects in Real-Time
| dc.contributor.author | Aydin, Ilhan | |
| dc.contributor.author | Sevi, Mehmet | |
| dc.contributor.author | Akin, Erhan | |
| dc.contributor.author | Guclu, Emre | |
| dc.contributor.author | Karakose, Mehmet | |
| dc.contributor.author | Aldarwich, Hssen | |
| dc.date.accessioned | 2024-12-14T22:07:31Z | |
| dc.date.available | 2024-12-14T22:07:31Z | |
| dc.date.issued | 2023 | |
| dc.department | Muş Alparslan Üniversitesi | en_US |
| dc.description.abstract | [Abdtract Not Available] | en_US |
| dc.description.sponsorship | Scientific Research Projects Coordination Unit of Firat University [ADEP.22.02] | en_US |
| dc.description.sponsorship | This work was supported by the Scientific Research Projects Coordination Unit of Firat University. Project number ADEP.22.02. | en_US |
| dc.identifier.doi | 10.17559/TV-20221020152721 | |
| dc.identifier.endpage | 1468 | en_US |
| dc.identifier.issn | 1330-3651 | |
| dc.identifier.issn | 1848-6339 | |
| dc.identifier.issue | 5 | en_US |
| dc.identifier.scopus | 2-s2.0-85171622944 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 1461 | en_US |
| dc.identifier.uri | https://doi.org/10.17559/TV-20221020152721 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/6649 | |
| dc.identifier.volume | 30 | en_US |
| dc.identifier.wos | WOS:001095802600005 | |
| dc.identifier.wosquality | Q3 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Univ Osijek, Tech Fac | en_US |
| dc.relation.ispartof | Tehnicki Vjesnik-Technical Gazette | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.snmz | KA_20241214 | |
| dc.subject | defect detection | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | fastener | en_US |
| dc.subject | object detection | en_US |
| dc.subject | railway system | en_US |
| dc.title | A Deep Learning-Based Hybrid Approach to Detect Fastener Defects in Real-Time | en_US |
| dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 6649.pdf
- Boyut:
- 2.62 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text










