Training multi-layer perceptron using harris hawks optimization

dc.contributor.authorEker, Erdal
dc.contributor.authorKayri, Murat
dc.contributor.authorEkinci, Serdar
dc.contributor.authorİzci, Davut
dc.date.accessioned2021-04-10T16:39:15Z
dc.date.available2021-04-10T16:39:15Z
dc.date.issued2020
dc.departmentMeslek Yüksekokulları, Sosyal Bilimler Meslek Yüksekokulu, Muhasebe ve Vergi Bölümüen_US
dc.description2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2020 --26 June 2020 through 27 June 2020 -- -- 162106en_US
dc.description2-s2.0-85089698640en_US
dc.description.abstractIn this paper, Harris hawks optimization (HHO) algorithm has been proposed as an up-to-date meta-heuristic algorithm for training multi-layer perceptron (MLP). The performance of the HHO-based MLP trainer was tested by employing five standard data sets (XOR, Balloon, Iris, Breast Cancer and Heart). The results were compared with those obtained with the sine cosine algorithm (SCA). Comparative statistical results showed that using HHO algorithm as a trainer is more effective and has a higher rate of classification ability. © 2020 IEEE.en_US
dc.identifier.doi10.1109/HORA49412.2020.9152874
dc.identifier.isbn9781728193526
dc.identifier.scopus2-s2.0-85089698640
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org10.1109/HORA49412.2020.9152874
dc.identifier.urihttps://hdl.handle.net/20.500.12639/2356
dc.identifier.wosWOS:000644404300049
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorEker, Erdal
dc.language.isotr
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2020 - 2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHarris hawks optimization (HHO)en_US
dc.subjectMulti-layer perceptron (MLP)
dc.subjectSine cosine algorithm (SCA)
dc.titleTraining multi-layer perceptron using harris hawks optimizationen_US
dc.typeConference Object

Dosyalar